Basis Functions
Voxel Predictions
Add Gaussian noise to deterministic models:
Covariance matrix (
Key:
Bayes’ Rule:
Approach:
Bayes’ Rule:
Approach:
Steps:
braincoder
can do all of this and leverages TensorFlow for fast, GPU-accelerated fitting.Your Turn:
from braincoder.models import GaussianPRF2DWithHRF
from braincoder.hrf import SPMHRFModel
from braincoder.optimize import ParameterFitter
# Set up model, including HRF
hrf_model = SPMHRFModel(tr=1.7)
model = GaussianPRF2DWithHRF(grid_coordinates=grid_coordinates, hrf_model=hrf_model)
# Set up fitter
fitter = ParameterFitter(data=v1_ts, model=model, paradigm=stimulus)
# Define grid search parameters
mu_x = np.linspace(-3, 3, 20, dtype=np.float32)
mu_y = np.linspace(-3, 3, 20, dtype=np.float32)
sigma = np.linspace(0.1, 5, 20, dtype=np.float32)
baselines = [0.0]
amplitudes = [1.0]
# Do grid search using correlation cost (so baseline and amplitude do not matter)
grid_pars = fitter.fit_grid(mu_x, mu_y, sigma, baselines, amplitudes, use_correlation_cost=True)
# Refine baseline and amplitude using OLS
grid_pars = fitter.refine_baseline_and_amplitude(grid_pars)
gd_pars = fitter.fit(init_pars=grid_pars)
Open notebooks/4_decode.ipynb
.