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Abstract 
Risk preferences have traditionally been considered as stable traits that reflect  

subjective-valuation processes in prefrontal areas. More recently, however, it has been 

suggested that risk preferences may also  be shaped by how choice problems are perceived and 

processed in perceptual brain regions. Specifically, the acuity of the parietal approximate number 

system (ANS), which encodes payoff magnitudes for different choice options, has been shown to 

correlate with both risk preferences and choice consistency. However, this correlational 

relationship leaves open the question whether parietal magnitude representations in fact causally  

underlie choice. Here, we provide direct evidence for such a key causal role of parietal 

magnitude representations in economic choice, using continuous theta-burst transcranial 

magnetic stimulation (cTBS), combined with functional MRI (fMRI) and numerical population 

receptive field (nPRF) modeling. 

Our stimulation protocol targeted numerosity-tuned regions in the right parietal cortex, identified 

through nPRF modeling of individual fMRI data (n=35; within-subject design). The stimulation 

successfully perturbed neural processing, as evidenced by decreased amplitude of numerical 

magnitude-tuned responses and less accurate multivariate decoding of presented magnitudes 

from unseen data that were not used for model fitting. In line with a perceptual account of risky 

choice, the reduction in neural information capacity was also reflected in noisier behavioral 

responses. Moreover, a computational cognitive model fitted to choice behavior revealed that 

perturbing the ANS specifically increased the noisiness of small-magnitude representations. This 

perturbation made small magnitudes to be perceived as larger than they actually are, leading to 

more risk-seeking behavior. Finally, individual estimates of the cTBS effect  on cognitive noise 

correlated with the corresponding decrease in amplitude of numerical magnitude-tuned fMRI 

responses, further solidifying the role of the parietal ANS in economic choice. In conclusion, our 

study demonstrates that the precision of parietal magnitude representations causally influences 

 



 

economic decision-making, with noisier encoding promoting biased risk-taking as formalized in 

recent perceptual models of risky choice. 

 

 

Corresponding authors:  Gilles de Hollander (Gilles.de.Hollander@gmail.com); Christian C. 

Ruff (christian.ruff@econ.uzh.ch) 

Keywords:  Risk aversion, Bayesian cognition, Number Sense, Neural encoding models, 

brain stimulation, continuous theta burst stimulation 

Running Title: Risk preferences are causally driven by parietal magnitude representations 

Competing Interests The authors declare no competing interests. 

Acknowledgements: We are grateful to C. Schnyder and K. Treiber at the Zurich Center for 

Neuroeconomics for their excellent assistance in recruitment and scanning. C.C.R. received 

funding from the University Research Priority Program ‘Adaptive Brain Circuits in 

Development and Learning’ at the University of Zurich and the Swiss National Science 

Foundation SNSF (grant no. 100019L-173248). G.d.H. was funded by the Dutch Research 

Council NWO (Rubicon grant no. 019.183SG.017/8O3B) and the University of Zurich 

(Forschungskredit grant no. K-33153-02-01) 

 

 

mailto:Gilles.de.Hollander@gmail.com
mailto:christian.ruff@econ.uzh.ch


 

Introduction 
Risk attitudes reflect the extent to which decision-makers are willing to accept higher 

variance in returns (i.e., higher risk) in exchange for potentially greater rewards. For 

instance, stocks typically yield higher average returns than bonds but also carry a greater 

likelihood of losing value. Some investors prefer the stability of bonds, while others favor the 

higher potential gains of stocks. Similarly, some may prefer comprehensive car insurance 

when renting a vehicle, whereas others are comfortable opting for higher deductibles at a 

lower price. Many economic theorists view such risk attitudes as an individual trait: just as 

some people particularly dislike electronic music, others may particularly dislike taking risks 

(Stigler and Becker, 1977).  

Individual risk attitudes are generally inferred from preferences, as elicited through tasks 

requiring choices between, for example, uncertain gambles and smaller but guaranteed 

payoffs (Mata et al., 2018; Pedroni et al., 2017). These behavioral preferences are then 

interpreted as proxies for underlying risk attitudes,  revealing how individuals generally 

balance potential rewards and uncertainty. However, growing evidence suggests that risk 

preferences are not as static as one would expect from a stable trait. Experimenters can 

profoundly manipulate risk preferences by emphasizing different information (Bordalo et al., 

2012; de Hollander et al., 2024; Molter & Mohr, 2021; Thomas et al., 2019), directing 

attention to specific aspects of a decision (Busemeyer & Townsend, 1993; Fiedler & 

Glöckner, 2012), or altering the range of payoffs participants have previously encountered  

(Stewart et al., 2006; Walasek & Stewart, 2015). 

One explanation for the observed instability of behavioral risk preferences is that they may 

be influenced by our moment-to-moment perception and representation of choice problems, 

which is inherently noisy and highly sensitive to context and expectations (Khaw et al., 2020; 

Woodford, 2020). Just as we can misjudge distances or time intervals in perceptual tasks by 

adapting our perception towards what we have recently observed (Petzschner et al., 2015), 

overestimating small and underestimating large values, we might similarly misjudge the size 

of monetary payoffs in economic decision-making. For example, people might perceive 

relatively larger and riskier payoff magnitudes as smaller than they actually are, making their 

behavior risk-averse. This regressive bias is far from arbitrary but reflects an optimal 

Bayesian strategy: When information is uncertain or noisy, our brains rely more on prior 

beliefs ("which potential payoffs are plausible in the first place") to reduce errors. While this 

can amplify systematic biases, it ultimately helps us make more accurate decisions over time 

and has consistently been observed in a wide array of perceptual domains (Petzschner et 

al., 2015). 

 



 

In line with a potential role for variable perception during risky choice, the perception and 

neural representation of different types of magnitudes—such as sizes, payoffs, and 

probabilities, which are key factors in economic decision-making—have been linked to a 

specific cortical region in and around the intraparietal sulcus (IPS). This region exhibits tuned 

responses to numerosity, as well as other abstract magnitudes (Bueti & Walsh, 2009; Cai et 

al., 2023; Foucault et al., 2024; Harvey, 2016; Harvey et al., 2013, 2015, 2020) and has 

been identified as the neural locus of the approximate number system (ANS), a cognitive 

system involved in quick judgments of numerical magnitudes (ANS; Dehaene, 2011; 

Dehaene et al., 1998). Could the fidelity and distortions of these parietal neural 

representations of the key numerical determinants of a choice problem be driving some of 

the economic choices we make? 

Multiple lines of recent evidence support such a perceptual account of risk preferences. 

First, individual differences in risk preferences are correlated with performance on  

perceptual tasks involving numerical magnitudes (Barretto-García et al., 2023; Peters et al., 

2005). For example, individuals with lower acuity in judging numerosities during the 

perceptual task tend to be less consistent and more risk-averse when making decisions 

about risky prospects. This finding suggests that a single trait may underpin both the fidelity 

of rapid numerical judgments and the degree of behavioral bias exhibited in economic 

decision-making, aligning with a Bayesian perceptual framework for risky choices where 

increased perceptual noise leads to more biased estimates (overestimating the smaller 

payoffs that come with safe options and underestimating those of riskier ones). This bias 

results in economic choices that deviate from risk-neutrality. Critically, this bias seems to 

relate to activity in the parietal ANS: The accuracy of a multivariate decoder trained to 

predict numerical magnitudes from fMRI activity patterns in the right IPS has been shown to 

correlate with the variability and bias of both perceptual and economic choice behavior, 

pointing out the potentially critical role of the acuity of the parietal ANS in shaping biases that 

determine risk preferences (Barretto-García et al., 2023). Indeed, neurally, participants with 

a higher gray matter volume in the right IPS behave more like an 'unbiased' risk-neutral 

decision-maker as well (Gilaie-Dotan et al., 2014). 

A second converging line of evidence revealed that temporal fluctuations in the acuity of 

neural magnitude representations in the right parietal ANS of a single individual predict their 

economic choices across decisions as well (de Hollander, Grueschow, et al., 2024). 

Decisions during which fMRI activity patterns in numerically-tuned parietal cortex were less 

consistent were associated with greater variability in participants' choices. Computational 

modeling of behavior revealed that participants seemingly relied more heavily on prior beliefs 

when noise increased, as reflected in responses that deviated more from risk-neutrality 

when neural representations appeared noisier. 

 



 

These earlier studies suggest a key role for magnitude representations in the parietal ANS 

and showcase the relevance of its properties for understanding risk preferences. However, 

studies on this topic have so far been exclusively correlational, raising the critical question of 

whether magnitude signals in the parietal ANS play a causal role in economic 

decision-making, or whether they merely reflect neurocognitive representations associated 

with choice. Without causal evidence, it remains possible that a factor outside the parietal 

cortex drives both behavior and the precision of parietal magnitude representations. For 

example, inter- and intraindividual differences in choice behavior might also be directly 

driven by attentional, arousal, or emotional traits/states (Jahedi et al., 2017; Olschewski et 

al., 2018; Stanton et al., 2014), so that the increased fidelity of neurocognitive 

representations in parietal cortex may be an epiphenomenon rather than than a neural origin 

of behavior (Pfeffer et al., 2022; Whitmarsh et al., 2022). 

Notably, one study has already shown that perturbation of the left IPS using brain 

stimulation can modulate risky choices under some circumstances (Coutlee et al., 2016). 

Specifically, when choosing between a certain amount and a risky 50-50 gamble, 

participants were less likely to choose the risky option after IPS perturbation. However, this 

study did not look into the neural effects of the stimulation, nor did it investigate whether the 

reduced number of risky choices was the result of decreased choice consistency, a shift in 

average risk preferences, or a combination of both. Importantly, general alterations in 

decision-making noisiness (without any link to preferences) can manifest as either 

increased or decreased proportions of risky choices (Olschewski et al., 2022). Thus, a 

precise, mechanistic characterization of the causal role of the parietal ANS in risky choice is 

lacking. 

Here, we seek to advance our understanding of the neural origins of risk preferences, by 

temporally perturbing the parietal approximate number system (ANS) in human participants 

during a choice task involving risky prospects with brain stimulation. Critically, we measured 

how this perturbation influenced neural representations of payoff magnitudes using fMRI as 

well. Furthermore, we employed a computational behavioral modeling framework to 

separately quantify the effects of the perturbation on both choice consistency and average 

risk preferences. 

We used continuous theta-burst transcranial magnetic stimulation (cTBS; an offline 

transcranial magnetic stimulation (TMS) protocol applied before task performance Huang et 

al., 2005). Previewing our results, stimulation reduced the fidelity of parietal tuning to the 

presented payoff magnitudes. Moreover, we found reduced choice consistency and 

increased risk-seeking behavior, but only for trials where participants were presented with 

smaller, safe payoffs first. Individuals showing larger reductions in choice consistency due 

to cTBS also exhibited greater shifts in risk preferences, aligning with predictions from a 

 



 

Bayesian perceptual framework of decision-making in which increased noise leads to 

increased weighting of prior beliefs and stronger perceptual biases. Computational 

modeling of the cognitive processes underlying these effects confirmed that the shifts in 

preference and response consistency can be attributed to increased noise in processing 

smaller but not larger magnitudes. Finally, the model-based estimate of increased noise in 

magnitude processing correlated with reduced amplitudes of neurophysiological payoff 

representations (nPRFs) after stimulation, solidifying the tight link between the parietal ANS 

and choice behavior. 

Together, these results provide critical insights into how neurocognitive representations of 

payoff magnitudes, localized in the parietal ANS, shape economic decisions and why 

people sometimes exhibit more or less risk-averse behavior. By identifying the role of 

representational parietal noise in influencing choice consistency and risk preferences, our 

study also sheds more light on the neuro-cognitive mechanisms underlying variability in 

decision-making under uncertainty over and above the presumed role for the 'prefrontal' 

valuation network (Bartra et al., 2013; Levy & Glimcher, 2012). 

Results 

Experimental approach 

Our experiment consisted of three sessions, during which participants repeatedly performed 

a decision-making task involving risky prospects. The first session aimed to identify 

participants with the most clearly defined magnitude-tuned regions in the right intraparietal 

area. This clear definition was crucial because we aimed to specifically target 

numerically-tuned subregions of the parietal cortex rather than a location based on 

macroanatomy (via, e.g., MNI space). Thus, using fMRI, we assessed which subregions of 

the parietal cortex exhibited sufficiently reliable tuning to specific stimulus numerosities 

within the relatively short scanning time permitted by our TMS design, and confirmed that 

these subregions were accessible for subsequent stimulation (i.e., didn't lie deep in the 

sulcus). 

Participants who met pre-defined selection criteria (see Fig.1 and Methods for details) 

proceeded to two additional sessions. In these sessions, participants again performed the 

decision-making task, but with either active stimulation targeting the most reliably 

numerically tuned regions of the right parietal number area or sham stimulation applied to 

the vertex. 

 



 

The decision-making task, performed during both sessions while undergoing fMRI, consisted 

of 120 choices between a sure option with a fixed payout and a risky option with a 55% 

probability of a substantially larger payout. Options were presented sequentially (see Fig. 

1A). The presentation order (i.e., risky option first or safe option first) was counterbalanced 

across trials since earlier work has revealed a strong order effect in this experimental 

paradigm related to working memory effects (de Hollander, Grueschow, et al., 2024). 

Participants were financially incentivized: One choice was randomly chosen and its outcome 

determined and paid out  for each session. 

Seventy-eight (78) participants (47 male, average age 23.9, ranged 18-35) joined the first 

experimental session of the experiment, of which thirty-five (35) subjects (23 male, average 

age 23.1, ranged 18-30) were selected for the two follow-up sessions involving TMS (see 

Methods for more details). Stimulation was conducted on the scanner bed, immediately 

before participants entered the scanner bore to perform the experimental paradigm. On 

average, 3 minutes and 13 seconds (std. 19 seconds) elapsed between the end of the 

stimulation protocol and the start of the first trial (see methods for more details). 

 

 
Figure 1: A) Experimental paradigm. Top panel: Participants were sequentially 

presented with two choice options: A larger payoff with a 55% payout probability or a 

smaller,payoff that was 100% certain. Presentation order was counterbalanced 

across trials (Same number of Risky first or Risky second) to control for previously 

established order effects. Participants could respond as soon as the second 

stimulus was presented and got feedback about which option they had chosen (but 

 



 

not the outcome of the gamble). Bottom panel: The first session was used to select 

participants for reliable numerically-tuned activation patterns in parietal cortex, as 

well as non-random behavior and TMS feasibility. B) Individual nPRF maps. Two 

representative examples of the explained variance maps. Note how robust 

numerosity tuning is mostly confined to areas in and around the lateral intraprietal 

area. C) NPC stimulation sites. Based on the estimated nPRF R2 maps, we 

selected a cTBS target on the rostral bank of the intraparietal sulcus. This figure 

shows all 35 targets as individual colored circles in fsaverage-space. Note that there 

are substantial interindividual differences in peak R2 clusters and therefores 

stimulation sites. This is in line with earlier work focusing on numerical (Harvey et 

al., 2013) and visual receptive fields in intraparietal cortex (Wang et al., 2015) that 

showed very substantial interindividual variability in the macro-anatomical location of 

functionally-defined regions. 

 

Numerically tuned areas were identified by fitting a numerical receptive field (nPRF) model to 

single-trial fMRI responses to the first payoff magnitude. This early signal, preceding any 

decision-related activity from the second stimulus, isolates perception-related activity free 

from decision-making or response time effects (Barretto-García et al., 2023; de Hollander, 

Grueschow, et al., 2024; Harvey et al., 2013). The nPRF model characterizes voxels with 

reliable tuning to specific numerosities, showing peak activity for preferred values and 

decreasing activity for neighboring numerosities. Such tuned responses have been shown to 

predict individual differences in decision-making involving numerical magnitudes 

(Barretto-García et al., 2023; de Hollander, Grueschow, et al., 2024; Eger et al., 2009; 

Harvey et al., 2013; Lasne et al., 2019). 

Decreased amplitudes of numerically-tuned parietal cortex after cTBS 

First, we probed the influence of cTBS on the noisiness of the neural representations of 

payoff magnitudes in the parietal ANS, by measuring its effect on observed nPRF 

parameters. The precise ROI we used was an individualized numerical parietal cortex mask 

that was defined as all voxels that (a) were within 2 centimeters of the center of the nPRF 

cluster from session one that was used to target the TMS coil (Fig. 1C), (b) fell within a 

predefined anatomical mask of the right numerical parietal cortex (NPC1 and NPC2 mask in 

Barretto-García et al., 2023), and (c) showed a cross-validated out-of-sample R2 higher than 

0 in at least one of the two experimental sessions (i.e., session 2 or 3). 

We hypothesized that cTBS should reduce neural responsivity, which would correspond to 

the nPRF model's amplitude parameter. Indeed, we found significantly lower nPRF 

 



 

amplitudes after parietal stimulation (from 1.30 to 1.04 percent signal change, t(34) = 1.99, 

p=0.027, one-sided; Fig. 2B) compared to vertex stimulation. There was no difference in the 

average preferred numerosity (17.8 to 14.8; t(34) = 1.00, p=0.32), nor the dispersion of the 

nPRFs (from 0.9 to 0.77 sd in log space; t(34) = 1.27, p=0.21), highlighting a specific effect 

of TMS on the amplitude of the nPRF but not its numerosity tuning. The resulting activity 

patterns were also noisier, as reflected in the significantly reduced explained variance of the 

selected voxels (from 6.8% to 4.9%; t(34) = 2.06, p=0.023, one-sided). Furthermore, the total 

proportion of voxels that showed an out-of-sample-explained variance of more than 0 also 

decreased after cTBS on parietal cortex (from 11.1% to 7.5%, t(34) = 1.99, p=0.027, 

one-sided). 

 

 

Figure 2. A) Preferred numerosities of numerically tuned cortical areas in a 
representative participant reveal clear non-linear tuning around the intraparietal 

and postcentral sulcus, consistent with prior findings (Barretto-García et al., 2023; 

de Hollander, Grueschow, et al., 2024). B) Responses amplitudes for vertex and 
parietal stimulation in numerosity-tuned parietal areas. The amplitude of 

numerosity-tuned populations in parietal cortex was reduced after cTBS. Also, note 

how the majority of tuned populations had a relatively low preferred numerosity. 

Shaded areas correspond to the standard error of the mean over participants. C) 
Decoding accuracy: When the nPRF model was inverted to decode presented 

numerosities, accuracy decreased following cTBS in the parietal cortex (dots are 

individual differences, error bars standard error of the mean). 

 

In line with our earlier work (Barretto-García et al., 2023; de Hollander, Grueschow, et al., 

2024), we also inverted the nPRF model for individual participants and decoded the 

presented payoff magnitudes on a trial-by-trial basis from out-of-sample fMRI activity 

patterns. We hypothesized that the attenuation of parietal numerosity-tuned neural 

 



 

populations would reduce the fidelity of the neurocognitive representation, thereby reducing 

our ability to decode the objective numerosities from neural data. Indeed, the correlation 

between the decoded potential payoff and the actual payoff was lower after parietal ANS 

stimulation than vertex stimulation (mean r=0.142 versus r=0.092, F(1,34) = 4.99, p=0.032; 

Fig. 2C), in a similar manner for trials where risky or safe options were presented first 

(interaction of cTBS and presentation order:  F(1, 34)=0.86, p=0.360). 

In sum, the neural analysis confirmed that our cTBS protocol was successful in perturbing 

neural processing in numerically-tuned parietal cortex: The average amplitude in response to 

the stimuli was diminished, thereby also reducing the signal-to-noise ratio of these 

representations, but without changing their average tuning or specificity. 

Stimulation of parietal ANS decreases choice consistency and shifts 

average risk preference 

A key behavioral hypothesis that follows from our perceptual framework is that the 

perturbation of neurocognitive representations of the payoff magnitudes should lead to less 

consistent choice behavior, because when neurocognitive representations become more 

variable, so should the resulting choice behavior.  

To test this hypothesis, we fitted a psychophysical (probit) model using hierarchical Bayesian 

estimation (Barretto-García et al., 2023; Khaw et al., 2020; Olschewski et al., 2018, 2022; 

Olschewski & Rieskamp, 2021). This model predicts the mean proportion of risky choices for 

a given choice problem as a function of the log ratio between the payoff of the risky and safe 

option (accounting for Weber’s law; Barretto-García et al., 2023; de Hollander, Grueschow, 

et al., 2024; Khaw et al., 2020). The model assumes that the larger this ratio is, the more 

likely a participant is to choose the risky option. The strength of this relationship is a 

measure of the consistency of choices (and a direct analogue of psychophysical sensitivity in 

perceptual tasks; Green & Swets, 1966). The model also has an intercept parameter that 

(when scaled by the slope parameter) determines where the indifferent point of a participant 

lies – the ratio between risky and safe payoffs where the participant chooses the risky option 

50% of the trials and which is our measure of average risk preference (see also Khaw et al., 

2020). Note that we refrained from analyzing raw choice proportions since they cannot be 

interpreted cleanly in isolation (Olschewski & Rieskamp, 2021).  

In our psychophysical model, we also included the order in which options were presented in 

our model (i.e., risky or safe option presented first). We did this because earlier work using 

the same experimental paradigm (de Hollander, Grueschow, et al., 2024) has revealed a 

profound effect of presentation order on average risk preference, reflecting that 

first-presented options in working memory are noisier and therefore perceived with more 

 



 

bias. Here, we replicated this order effect as well (risk-neutral probability1 was 51.0% [44.4, 

57.0] when the risky option was presented first and 55.2% [47.5, 63.0] when the risky option 

came second; pBayesian = 0.001). 
Our psychophysical analysis (Fig. 3) revealed that choice consistency was indeed 

significantly reduced after cTBS, but only for trials where the safe option was presented first 

(slope from 2.56 [2.19, 2.97] to 2.19 [1.83, 2.56]; pBayesian=0.013), not when the risky option 

was presented first (slope from 2.44 [2.05, 2.85] to 2.41 [2.19, 2.97], pBayesian=0.446).  

As for average risk preferences, we had no direct hypothesis about the effect of cTBS. In our 

Bayesian perception framework, when noise increases, subjects should rely more on their 

priors and become more biased in their perception of the payoff magnitudes. However, 

whether this leads to more or less risk averse behavior depends on multiple factors, such as 

the prior beliefs of the participants about the plausible ranges of payoffs, which option was 

presented first, and which of the two options is affected more by the increased noisiness 

(considering factors like heteroskedastic noise and working memory effects; de Hollander, 

Grueschow, et al., 2024). 

Empirically, we found a very robust decrease in risk aversion after cTBS, again only when 

safe options were presented first, mirroring the order-specific effect of noise (risk-neutral 

probability increased from 52.4%, [95% CI: 47.2%, 58.3%] to 57.9% [51.8%, 64.3%], 

pBayesian=0.001; Fig. 3B). Conversely, cTBS did not affect risk preference during trials where 

the risky option was presented first (risk-neutral probability increased only slightly from 

50.6% [44.3%, 57.45] to 51.3% [45.3%, 57.1%] ,pBayesian=0.351). The interaction effect 

between presentation order and stimulation was significant, both for the indifference point 

(pBayesian=0.002) and choice consistency (pBayesian=0.0338). 

 

 

1 Risk-neutral probability (RNP) is one way to define the indifference point of a decision-maker and is 
the payout-probability that the risky option would have to have for a risk-neutral decision-maker to 
make the same choices as those empirically observed. Thus, a RNP below 55% corresponds to risk 
aversion, a RNP of 55% corresponds to risk-neutrality, and a RNP above 55% corresponds to 
risk-seeking (Barretto-García et al., 2023; de Hollander, Grueschow, et al., 2024; Khaw et al., 2020). 

 



 

 

Figure 3. A) Psychometric Curves. Earlier work (de Hollander, Grueschow, et al., 

2024) has shown a strong effect of presentation order on risk preference, in line with 

the assumption that first-presented options are represented more noisily in working 

memory and therefore more biased. Here, we replicate this effect, as participants 

were more likely to choose the risky option when it was presented second (compare 

bottom with top panel). Moreover, when risky options are presented second, 

subjects show a markedly more shallow response curve with a more risk-seeking 

indifference point (leftwards). Circles represent raw behavioral data, while the 

shaded areas depict the 95% credible intervals of the posterior predictions of the 

psychophysical choice model. The x-axis corresponds to six individually determined 

risky-safe ratios based on calibration data. B) Model Parameters of 
psychophysical model: In line with the qualitative effects on the psychometric 

slope, the estimated parameters of the psychophysical model indicate shifted risk 

preference towards risk-seeking and a significant decrease in response consistency 

after parietal TMS, but only when the risky option was presented second. 

 

As discussed, perceptual theories of decision-making under uncertainty (Frydman & Jin, 

2021; Hollander et al., 2024; Khaw et al., 2020) suggest that noisier representations of the 

payoff magnitudes should go hand in hand with more biased payoff percepts: The noisier the 

perception of a payoff magnitude, the more decision-makers should rely on their prior 

beliefs, thereby minimizing the average (squared) error over all possible payoffs but also 

increasing biases (Petzschner et al., 2015; Pouget et al., 2013). This means that 

decision-makers with lower choice consistency should also be more biased in their decisions 

(i.e., less risk-neutral). We indeed find this relationship in our experimental data, replicating 

earlier work (Barretto-García et al., 2023; de Hollander, Grueschow, et al., 2024; Khaw et al., 

2020). Across participants, the risk preference (i.e., the indifference point of the 

psychophysical model) correlates highly with choice consistency (r(34)=0.76, p=0.004).  

 



 

Critically, if cTBS on the right parietal cortex modulates risk preferences via the acuity of 

neurocognitive magnitude representations, one would expect that the effects of cTBS on 

choice consistency should also correlate with its effect on choice bias. Indeed, in our data 

the average decrease in choice consistency was correlated with the shift in average risk 

preference away from risk neutrality (r(34)=-0.51, p<0.001, one-sided). Furthermore, this 

correlation was slightly stronger when only considering trials where the risky option was 

presented second (r(34) = -0.59, p<0.001, one-sided) as compared to trials where the risky 

option was presented first (r(34)=-0.32, p=0.027, one-sided). 

In summary, the analysis of choice behavior using psychophysical modeling shows a robust 

effect of parietal cTBS on both choice consistency and average risk preference, in line with 

the decreased fidelity of the numerically tuned signals measured using fMRI. However, the 

effect only occurs when safe options are presented first. We now turn to more mechanistic 

computational models of choice to better understand this empirical pattern. 

Shifts in risk preference are driven by increased noise in small- but not 

large-magnitude representations 

After examining the effects of cTBS on magnitude representations in the right parietal ANS, 

as well as on choice consistency and average risk preferences, we applied our previously 

published Perceptual and Memory-based Choice (PMC) model (de Hollander, Grueschow, et 

al., 2024) to participants' behavior to gain deeper mechanistic insights into the impact of 

cTBS on the parietal ANS. The PMC model posits that choices are guided by the 

maximization of perceived expected value, in contrast to traditional frameworks that 

emphasize objective expected value or subjective utility (Woodford, 2020). The model 

proposes that decision-makers perform Bayesian inference on noisy neural representations 

(anatomically situated in the parietal cortex), which leads to systematic 'regressive' biases 

towards the perceived mean payoff. Thus, critically, the PMC model suggests that noise in 

these representations can distort the perceived value of options – in particular for those 

options that are presented earlier, as the effects of working memory deterioration make them 

more susceptible to biases compared to later-presented options. 

We estimated model parameters across two TMS conditions, allowing noise levels to vary for 

either the first option only (working memory noise) or both options (perceptual noise). While 

the PMC model qualitatively accounted for reduced choice consistency following parietal 

cTBS, it failed to capture the specific increase in risky choices when risky options were 

presented second (as shown in the "Weber model" in Fig. 4A). At the same time, model 

comparisons using leave-one-out expected log predictive density (ELPD) consistently 

ranked null models (no TMS effect) lowest among the six models tested (see Table 1), 

 



 

suggesting  that cTBS has some effect that is not clearly captured by the tested version of 

the PMC model. 

Since the PMC model did not fully capture the observed behavioral patterns, particularly the 

specific increase in risk-seeking when risky options were presented second (see the 

posterior predictive plots in the left panel of Fig. 4A), we followed the proposed procedure of 

further model refinement to better account for the observed effects  (Gelman et al., 2013; 

Lee & Wagenmakers, 2014).  

A key insight from the neural numerical PRF modeling relevant to our cognitive model 

development is that most numerical receptive fields identified in the fMRI data prefered 

smaller numerosities relative to the stimulus distribution. While the interquartile range of 

presented numerosities in our experimental paradigm was [13, 30], the interquartile range of 

preferred numerosities across all subjects was [6, 10] (see Fig. 3B). This suggests that the 

regions in the parietal ANS targeted by TMS primarily represent small numerosities, which 

may explain the misfit of our original model. 

To investigate this further, we fitted a psychophysical model with a median split on average 

stake size (the sum of the risky and safe options). We found a significant reduction in choice 

consistency for low-stake trials when safe payoffs were presented first (slope from 3.02 [CI 

95%: 2.73, 3.30] to 2.32 [2.05, 2.57], pBayesian<0.001; see Supplementary Fig. 1), but no such 

reduction when risky options were presented first (from 1.73 [1.50, 2.01] to 1.59 [1.33, 1.85], 

pBayesian=0.204). This interaction effect between stake size and stimulation condition on 

choice consistency was significant (pBayesian=0.0153).  

Thus, parietal cTBS primarily affected choices involving smaller numerosities, particularly 

when the safe option was presented first. This indicates that the parietal ANS region 

targeted in our study plays a critical role in representing and processing smaller magnitudes. 

Increased noise in these representations under cTBS reduces choice consistency and 

biases participants toward riskier options in these specific scenarios. These findings 

underscore the importance of considering the numerical tuning properties of the parietal 

ANS in understanding its role in economic decision-making. 

To now capture these insights in a mechanistic computational model, we extended our PMC 

model by allowing noise levels to vary with magnitude, relaxing the assumption of constant 

noise in logarithmic space (i.e., scalar invariance; Khaw et al., 2020)  and, critically, allowing 

us to estimate the effect of cTBS on the representational noise of different magnitude sizes. 

Inspired by work on magnitude averaging by Prat-Carrabin & Woodford (2022), we 

introduced a 5-parameter B-spline function that maps magnitudes to noisiness in natural 

space, on magnitude averaging, we introduced a 5-parameter B-spline function to map 

magnitudes to noisiness in natural space, ensuring a non-linear yet smooth relationship (see 

methods). 

 



 

 

 

Figure 4. A) Posterior predictive checks: The Flexible PMC model captures the 

interaction between presentation order, stake, and stimulation condition on risky 

choices better than the Weber PMC model. In particular, the flexible PMC can 

capture the interaction between order and stimulation on choice proportions, unlike 

the simpler Weber model. The shaded areas correspond to the 95% credible interval 

of the group-level predictions. B) Noise as a function of magnitude: The 

model-fitted noise with which magnitudes are perceived increases markedly with the 

objective magnitude, in an affine trend (i.e., the noise never reaches 0, not even for 

small magnitudes). Conversely, working memory noise is estimated to be relatively 

stable across different magnitudes, although it slightly increases with magnitude as 

well. The shaded areas correspond to the 95% credible interval of the group-level 

estimates. C) Effect of TMS on noise: When the model-fitted noise curve of the 

vertex condition is subtracted from that of the cTBS condition, it becomes clear that, 

after parietal perturbation, noise increases for both presented options but 

predominantly for smaller magnitudes. The shaded areas correspond to the 95% 

credible interval of the group-level estimates. D) Brain-behavior correlation: The 

cTBS-induced decrease in nPRF amplitudes in the parietal cortex correlates with the 

cTBS-related increase in perceptual noise for magnitudes between 7 and 14. 

 

To make sure that this new Flexible PMC model was not overly complex ('overfitting' 

the data), we pitted it against the original Weber PMC model using both qualitative and 

quantitative model comparison. Qualitatively, the Flexible PMC model explained the 

order-specific increase in risky choices far better than the original Weber PMC model 

(Fig. 4A). Furthermore, formal model comparison revealed that the best-fitting model 

included both memory-specific noise (for the first option) and shared perceptual noise, 

both modulated by TMS. This model consistently outperformed all other variants, 

 



 

including a null model (Table 1), confirming that the effect of TMS is robust and 

restricted to a specific range of payoff magnitudes. Parameter estimates further 

highlight that it was the shared perceptual noise for smaller payoff magnitudes 

(approximately 7–14) that differed most significantly between TMS conditions, with 

credible intervals excluding 0.0 (Fig. 4B and C). These findings provide a refined 

mechanistic account of how parietal ANS disruptions influence decision-making under 

uncertainty. 
 

 ELPD (LOO) 

effective 
number of 
parameters 

Difference in 
ELPD SE dSE 

Flexible PMC model (TMS affects both 

perception and working memory) -4167.4 300.3 0.00 47.2 0.0 

Flexible PMC model (TMS affects 

perception only) -4193.6 264.7 -26.15 47.2 7.6 

Flexible PMC model (TMS affects 

working memory only) -4193.7 252.6 -26.30 46.9 8.1 

Weber PMC model (TMS affects both 

perception and memory) -4200.1 154.6 -32.72 46.4 15.0 

Weber PMC model (TMS affects 

memory only) -4202.5 170.3 -35.14 46.4 14.5 

Weber PMC model (TMS affects 

perception only) -4225.0 160.2 -57.60 46.2 15.1 

Flexible PMC null model -4247.6 190.0 -80.20 46.6 12.5 

Weber PMC null model​  -4265.5 127.2 -98.10 46.0 16.2 

 

Table 1. Formal model comparison using the expected leave-one-out log posterior 

density (ELPD; Vehtari et al., 2017) shows that the flexible noise models outperform 

models that assume Weber's law. Critically, all models that assume an effect of TMS 

on noise outperform corresponding null models that assume no effect of TMS. 

Abbreviations: ELPD (LOO): The expected log predictive density estimated using 

leave-one-out cross-validation. It measures the model's predictive accuracy by 

evaluating how well the model predicts unseen data, with higher values indicating 

better performance. Effective Number of Parameters: A measure of model 

complexity, reflecting the number of parameters effectively used in explaining the 

data. Higher values suggest a more complex model. Difference in ELPD: The 

 



 

difference in expected log predictive density between a given model and the 

reference model. Positive values favor the given model, while negative values favor 

the reference model. SE (Standard Error): The standard error associated with the 

ELPD estimate, reflecting the variability in the ELPD estimate. dSE (Difference in 

Standard Error): The standard error of the difference in ELPD between models, 

representing the uncertainty in the comparison of their predictive performance (note 

that dSE takes into account correlations between samples across models and is 

therefore larger than the difference divided by mean SEs). 

Linking Neural and Behavioral TMS Effects 

Our findings reveal that cTBS of the parietal ANS disrupts neurocognitive magnitude 

representations, leading to reduced choice consistency and increased risk-seeking behavior. 

These effects were particularly pronounced for smaller numerosities and when safe options 

were presented first. A refined "Flexible PMC model" that accounts for magnitude-dependent 

noise captures this pattern, by showing that cTBS specifically modulated perceptual noise 

for smaller magnitudes. This aligned with evidence from the fMRI analyses  that numerical 

tuning in the parietal cortex is primarily focussed on smaller numbers (Barretto-García et al., 

2023; Cai et al., 2021; Harvey et al., 2013). 

A key prediction of our theoretical framework, which posits the parietal ANS as the neural 

substrate for the neurocognitive representation of numbers, is that disruptions in parietal 

numerical representations should lead to increased neurocognitive noise, resulting in 

corresponding behavioral changes. To test this comprehensively, we examined whether the 

decrease in numerical receptive field (nPRF) amplitude in the parietal cortex predicted the 

increase in noise for small numerosities. Consistent with this hypothesis, we found a 

significant correlation (r(34) = 0.38, p = 0.012, one-sided; Fig. 4D) between the relative 

decrease in nPRF amplitude in numerically tuned voxels and the average increase in 

neurocognitive noise across the lowest three safe options (7/10/14) according to the flexible 

PMC model. 

Taken toegether, our results provide strong evidence that disruption of parietal ANS 

representations of smaller magnitudes increase perceptual noise for smaller payoffs, 

reducing choice consistency and altering risk preferences. The alignment of behavioral and 

neural effects under TMS supports our causal framework, highlighting the critical role of 

parietal magnitude representations in economic decision-making. This integrated 

neural-cognitive approach explains how disruptions in numerical representations lead to 

systematic behavioral biases, offering a mechanistic account of individual differences in 

decision-making under uncertainty. 

 



 

Discussion 
Everyday decisions often involve choices between more and less uncertain outcomes, and 

individuals differ in their preferences for how to handle such choices. Recent models and 

behavioral findings suggest that such preferences may not only reflect subjective valuation 

processes, but perhaps also be the precision and distortions with which individuals perceive 

and represent the relevant numerical magnitudes in such tasks, such as the potential payoffs 

of different options, before any decision is made (Barretto-García et al., 2023; de Hollander, 

Grueschow, et al., 2024; Frydman & Jin, 2021; Khaw et al., 2020). However, from a neural 

point of view, even though some neuroimaging studies have revealed correlational links 

between risk preferences and  the fidelity of neural signals in the 'approximate number 

system' (ANS) in the parietal cortex (Bueti & Walsh, 2009; Dehaene, 2011; Walsh, 

2003)(Barretto-García et al., 2023; de Hollander, Grueschow, et al., 2024)  a direct causal 

link between the precision of magnitude representations in the parietal ANS and economic 

decision-making yet has to be established. In this study, we establish such a link, by 

perturbing parietal ANS function using continuous theta-burst rTMS (cTBS). Importantly, we 

employed a novel approach using numerical receptive field modeling (nPRF) on individual 

fMRI data to precisely target regions of the dorsal parietal cortex with robust tuning for payoff 

magnitudes in each participant. This innovative use of nPRF modeling allowed us to probe 

the mechanistic effects of cTBS on parietal magnitude representations with unprecedented 

precision. We found that the amplitude of numerically tuned responses decreased after 

cTBS, while their tuning profile stayed constant. As a result, the amount of information about 

presented numerosities that could be decoded using an inverted nPRF model was reduced. 

Notably, the targeted area predominantly contained preferred responses to smaller 

numerical magnitudes. This neural preference for smaller magnitudes was reflected in the 

behavioral effects of parietal cTBS, as choice behavior was modulated only during decisions 

involving relatively small stake sizes. 

To achieve a more detailed mechanistic understanding of these effects, we applied 

computational cognitive modeling. Specifically, we extended our existing Perceptual and 

Memory-based model of risky Choice  (PMC; de Hollander, Grueschow, et al., 2024), which 

frames simple choices between prospects as a problem of Bayesian inference on noisy 

neurocognitive representations. While the original model assumed scalar invariance—a 

strictly linear increase in noise with increasing magnitudes—we developed a novel version 

that relaxes this assumption. Building on earlier work (Prat-Carrabin & Woodford, 2022), the 

updated model employs flexible spline functions to estimate the relationship between 

magnitude and cognitive noise based on observed data. Although this added flexibility 

 



 

increased the model's complexity, qualitative and formal comparisons confirmed that it was 

necessary to capture the intricate empirical patterns. More importantly, parameter estimates 

revealed that cTBS specifically increased the noisiness of representations for smaller 

payoffs, leading to perceptual distortions that accounted for the observed rise in risk-seeking 

behavior in a specific subset of choices. 

An earlier, related study that applied brain stimulation in the context of decision-making by 

Coutlee et al. (2016) showed that 1-Hz offline rTMS applied to the left parietal ANS (led to 

decreased risk-taking. In contrast, our study observed increased risk-taking following offline 

theta burst stimulation of the right IPS. An important difference between the two sets of 

results is that Coutlee et al. did not separately examine the effects of TMS on choice 

consistency or average preferences. However, the authors do report that after IPS 

stimulation, participants were not only less risk-seeking but also less likely to choose options 

with a higher expected value—a hallmark of both decreased choice consistency and 

increased bias. This additional finding can reconcile the diverging results of raw choice 

proportions. Such a reinterpretation of earlier results in the literature highlights the 

importance of jointly considering the effect of experimental manipulations on both average 

risk preference (i.e., an inferred indifference point or utility function), as well as choice 

consistency (Olschewski et al., 2022; Olschewski & Rieskamp, 2021). 

Besides these conceptual considerations, four potentially relevant methodological 

differences with the Coutlee et al. study should also be briefly mentioned. First, Coutlee et al. 

stimulated left IPS rather than right IPS (and there is some evidence for lateralizing 

risk-taking behavior; Dantas et al., 2023; Sacré et al., 2019). Note that we chose to stimulate 

right IPS based on literature in numerical cognition that suggest right-lateralization of the 

ANS (Barretto-García et al., 2023; Dehaene, 2011; Dehaene et al., 2003; Eger et al., 2003; 

Lasne et al., 2019), as well as our work that showed the most robust links between neural 

activity and choices in right parietal cortex (Barretto-García et al., 2023; de Hollander, 

Grueschow, et al., 2024). Second, Coutlee et al. used a different stimulation protocol: 1-Hz 

offline repetitive TMS rather than theta-burst stimulation. Third, they had a decision-making 

task that involved symbolic rather than non-symbolic magnitudes. Fourth, their task had no 

explicit working memory component.  

A similar study by Panidi et al. (2023) also showed that stimulation of the left and right 

"posterior parietal cortex" using cTBS led to increased risk aversion in a multiple price lists 

task, where a set of multiple gambles with increasing payoff are presented together versus a 

baseline option. The increase in risk aversion is consistent with an increase in 

neurocognitive noise (and increased bias), just as observed in our study. However, the 

authors also report increased choice consistency as estimated by a prospect theory model. 

Unfortunately, the choice consistency derived from prospect theory is hard to compare to our 

 



 

results because it is defined based on the subjective scale of the estimated utility function, 

rather than the objective scale of actual payoffs we use here. Moreover, the multiple price 

lists-paradigm comes with severe methodological problems (Drichoutis & Lusk, 2016) and 

might elicit additional cognitive processes over and above numerical processing, such as 

flexible spatial attention, which could have been influenced by cTBS as well. 

Other relevant work applying brain stimulation techniques (Dantas et al., 2021, 2023) 

revealed that risk preference can also be modified by stimulation of the frontal cortex. 

Specifically, risk appetite has been manipulated by increasing or decreasing theta band 

power in frontal areas using transcranial alternating current stimulation (tACS), with opposite 

effects for the two hemispheres. The authors interpret this finding as an increase/decrease 

of cognitive control, implemented by frontal oscillations and helping a participant "inhibit" 

default responses (see also Gianotti et al., 2008). A potential alternative explanation, based 

on our perceptual modeling framework, could be that frontal theta oscillations may increase 

selective attention toward relevant stimuli (Landau et al., 2015; Spyropoulos et al., 2018). 

Upregulated selective attention might improve magnitude perception and thereby shift risk 

appetite. Future work should explore this hypothesis by explicitly measuring noise in both 

choice and parietal ANS after frontal brain stimulation. Interestingly, the processing of 

symbolic versus non-symbolic numerosities is somewhat lateralized as well (left- versus 

right-hemisphere respectively; Dehaene & Cohen, 1991; Warrington & James, 1967), which 

might explain why theta band oscillations in left hemisphere are related to risk appetite 

symbolic risk tasks (Dantas et al., 2021, 2023) and right-hemispheric theta oscillations are 

related to non-symbolic risk tasks (Gianotti et al., 2008). 

Although neuroimaging studies on the parietal ANS and risk-taking have shown a link 

between numerical magnitude processing and the parietal cortex (Barretto-García et al., 

2023; de Hollander, Grueschow, et al., 2024) and brain stimulation studies also hinted to a 

causal role of the parietal cortex in risky choice (Coutlee et al., 2016; Panidi et al., 2023), a 

direct causal link between the precision of parietal magnitude representations and behavior 

was still lacking. By combining brain stimulation (cTBS) and neuroimaging (fMRI) 

techniques, our study provides compelling evidence for a critical causal role of the 

perceptual processing of magnitude information in economic choice problems and the right 

parietal ANS in risky decision-making. 

Traditionally, studies on decision-making involving risks have mainly focused on the classical 

'valuation network' including the ventromedial prefrontal cortex, as well as the insula and the 

dopaminergic system, including the dopaminergic midbrain and the ventral striatum (Bartra 

et al., 2013; Mohr et al., 2010). This focus on the valuation network has also driven the 

search for clinical markers of psychiatric disorders like gambling addiction (Miedl et al., 2012; 

Sharp et al., 2012). However, our findings suggest that neural systems involved in perceiving 

 



 

decision-making problems might play a similarly significant role in decision-making under 

uncertainty. That is, some behavioral research already suggests that the expectations about 

potential payoffs are structurally different in gamblers (Griffiths, 1990; Rogers, 1998; Spurrier 

& Blaszczynski, 2014). Moreover, structural differences in perceptual brain regions regions, 

particularly the right parietal ANS, could contribute to psychiatric disorders and warrant 

further investigation. Notably, previous studies have demonstrated that structural properties 

of the right posterior parietal cortex predict individual differences in risk preferences among 

healthy adults (Gilaie-Dotan et al., 2014). Future work might investigate false beliefs in 

pathological gamblers using explicit Bayesian models of risk perception (Paliwal et al., 

2014, 2019) and link those to parietal regions involved in numerical cognition.  

Our findings reveal that brain state can have a profound influence on economic choices (see 

also Chew et al., 2019; de Hollander, Grueschow, et al., 2024). This has important 

implications for risk elicitation techniques used in real-world applications, such as in the 

finance industry (Alserda et al., 2019), and might also further elucidate the relationship 

between arousal/attentional states and gambling behavior (Brown, 1986; FeldmanHall et al., 

2016). Understanding how arousal and attentional states modulate magnitude 

representations could also shed light on the mechanisms underlying gambling behavior and 

other risky activities, potentially offering novel therapeutic targets for interventions. Future 

research should explore how these dynamic neural and cognitive factors interact to shape 

economic behavior, paving the way for more personalized approaches to managing risk and 

decision-making in both clinical and everyday contexts. 

Both our neuroimaging and behavioral results following cTBS suggest that relatively 

smaller—rather than larger—numerical magnitudes are specifically encoded in the parietal 

cortex. It remains an open question whether parietal neurons genuinely specialize in 

encoding smaller magnitudes, or if this finding reflects a potential property of our 

experimental design in which smaller magnitudes were more frequent. This design choice 

could have facilitated responses to smaller numbers, or could have introduced range 

adaptation effects. Future studies that systematically vary the range of potential payoffs will 

be crucial for disentangling these hypotheses (Cai et al., 2021). Regardless, our findings 

underscore the utility of focal brain stimulation techniques like TMS, particularly when guided 

by precise fMRI-based functional mapping, in decoding neural representations of abstract 

stimulus features such as numerosity or magnitude. By directly manipulating these neural 

coding patterns, TMS provides a powerful tool to establish causal links between neural 

activity and cognitive functions. 

Advances in ultra-high field neuroimaging (Dumoulin et al., 2018), with its considerably 

improved resolution and signal-to-noise-ratio, combined with dense individual sampling 

 



 

across multiple sessions (Poldrack, 2017), should enable even more precise targeting of 

numerosity-tuned regions in the parietal cortex in future work. Such an approach could go 

beyond general targeting of the ANS and towards selectively stimulating cortical patches 

corresponding to specific segments of the number line within the topographically organized 

parietal numerosity map. Such an approach could serve as a numerical analog to 

phosphene mapping in the primary visual cortex using TMS (Murphey, 2009). This could 

potentially tighten the gap between observed neural coding patterns and behavior in healthy 

human participants even further. 

In conclusion, our brain stimulation study provides compelling evidence for a critical causal 

role of the right parietal approximate number system in risky decision-making. Moreover, it 

offers a detailed, mechanistic neural account of the parietal ANS's involvement in magnitude 

representation through nPRF models and how perturbations to this region affect magnitude 

perception and, consequently, risk preferences. These findings highlight the integral role of 

perceptual processes in tasks traditionally considered purely economic. Building on this 

perspective, our findings underscore the need for further development of economic 

decision-making models that integrate both perceptual and preference-based components  

(Woodford, 2020) and demonstrate how advanced neuroimaging and brain stimulation 

approaches can push theoretical frameworks beyond what is achievable through behavioral 

experiments alone. 

Methods 

Participants 

Seventy-eight right-handed participants (31 females, ages 18 to 35; mean age 23.9) 

volunteered to participate in this study. We informed them about the study’s objectives, the 

equipment used in the experiment, the data recorded and obtained from them, the tasks 

involved, and their expected payoffs. We also screened participants for MRI and TMS 

compatibility before they participated in the study. No participant had indications of 

psychiatric or neurological disorders or needed visual correction. Our experiments 

conformed to the Declaration of Helsinki, and our protocol was approved by the Canton of 

Zurich’s Ethics Committee. After the first sessions, thirty-five participants (12 females; age 

18 to 30; mean age 23.1) were selected for two more follow-up experimental sessions (see 

below for more details about the procedure). 

 



 

General procedure 

All 78 participants attended an initial experimental session, during which they received an 

informed consent form and detailed task instructions. After providing consent, participants 

were familiarized with the TMS system, and their active motor threshold was determined in 

the left primary motor cortex (M1; see below). Following this small TMS session, participants 

proceeded to the scanner room, where structural MRI data were collected. During the 

acquisition of the structural MRI, participants performed a calibration task to estimate their 

average risk preference and choice consistency.  

This calibration task involved making choices between 96 risky gambles (55% chance of 

payout and 45% chance of winning nothing) and 96 corresponding 'safe options' (sure 

payout). Each choice pertained to one of 5 unique safe payoffs (7, 10, 14, 20, or 28 CHF; 1 

CHF is currently 1.12 USD or 1.07 EUR, Big Mac index ~= 0.154) and a risky option that 

was  times the safe option, with  all integers from 1 to 8. Each pair was presented twice, 2ℎ/4 ℎ

once with the safe option shown first and once with the risky option shown first. Calibration 

data were fitted using a psychometric probit model, with 'chose risky option' as the 

dependent variable and an intercept and the log-ratio of the risky and safe options as 

independent variables  (de Hollander, Grueschow, et al., 2024). The fitted model predicted, 

for any given risky/safe payoff ratio, a proportion of risky choices. 

​​Based on these predictions, a participant-specific task design was developed to maximize 

the precision of psychophysical model estimation (de Hollander, Grueschow, et al., 2024; 

Heerema et al., 2023). This design used six payoff fractions spaced equally in log-space, 

corresponding to predicted risky choice proportions between 20% and 80%. These were 

combined with five safe payoffs (7, 10, 14, 20, 28), with each combination presented twice in 

both safe-first and risky-first orders, resulting in 120 trials per session. After calibration, this 

task design was presented during fMRI scanning over six runs of 20 trials each (see 

Experimental Paradigm). 

Following the first session, participants were monetarily compensated, and their data were 

analyzed to assess suitability for TMS sessions. Suitability was determined based on four 

criteria: (1) a robust cluster of at least five voxels in the dorsal parietal cortex showing 

numerosity tuning with at least 10% explained variance (R2R^2R2) across all trials; (2) 

anatomical accessibility of the numerosity-tuned region for TMS (e.g., on the dorsal bank of 

the IPS); and (3) no adverse effects of TMS pulses on M1 (4) no extreme choice behavior in 

the task (less than 10% or more than 90% risky choices across trials).  

Thiry-two (32) subjects were excluded because they did not show a robust numerically-tuned 

cluster in IPS, 5 subjects were excluded because the found cluster lay too deep int he sulcus 

 



 

to be reached by TMS, 3 subjects showed adverse effects of TMS, one subject excluded 

herself and two subjects showed too extreme choice behavior. 

Thus, out of 78 participants, 35 met the inclusion criteria and were invited for two additional 

sessions. The relatively low number of eligible participants compared to earlier studies 

(Barretto-García et al., 2023; de Hollander, Grueschow, et al., 2024) was largely due to the 

reduced number of trials in this study (120 compared to 192 and 216 in prior studies). This 

choice was based on evidence that cTBS influences behavior for approximately 30 minutes 

(Huang et al., 2005), and we aimed to select participants whose numerosity-tuned 

responses were sufficiently reliable to observe within this time window. 

It is important to note that our study employed a within-subject design, ensuring that baseline 

differences between participants do not confound TMS effects. While participants selected 

for TMS exhibited slightly higher choice consistency (2.25 [CI: 1.92–2.56] vs. 1.94 [CI: 

1.65–2.24]) and were slightly more risk-seeking (neutral risk probability: 48.3% [42.9–54.3] 

vs. 44.7% [38.5–51.1]), these differences were not statistically significant (pBayesian=0.082) 

and do not reflect a selection based on risk preferences. Instead, the selection was strictly 

guided to ensure accurate anatomical targeting of numerosity-tuned regions. The use of 

individualized targeting was critical due to the high interindividual variability in the location of 

numerosity-tuned populations (Harvey et al., 2013, 2020). This approach is significantly 

more effective than targeting standardized coordinates (e.g., MNI152 or fsaverage) and 

cannot explain away the observed within-subject effects of TMS (Sack et al., 2009). 

In the two experimental sessions, participants got to read the instructions for the task again 

and gave written informed consent. Then, they immediately went to the scanner room, and 

the active motor threshold was determined using the TMS device in the scanner room (see 

TMS stimulation for details). Then, the participant laid down on the scanner bed and was 

stimulated using the cTBS protocol, targeting either the vertex or the predetermined parietal 

cluster. After the stimulation protocol finished, the participant was immediately put in the 

scanner, and the experimental paradigm was started as soon as possible. The average time 

that elapsed between the end of the cTBS protocol and the onset of the task was 3:12 (std. 

0:19). Out of 35 participants, 18 participants were stimulated over the parietal cortex for the 

2nd session and stimulated over the vertex for the 3rd session. For the remaining 17 

participants, this order was reversed. 

Experimental paradigm 

The task of the participants was, for every trial, to choose between a certain amount of 

money (7/10/14/20 or 28 CHF) and a gamble with a 55% probability of winning a larger 

amount of money and a 45% probability of winning nothing at all. The choices were 

 



 

represented by a sequence of tailored stimuli. The general sequence is illustrated in Fig. 1A. 

The screen always contained a red cross with two diagonal lines to keep fixation near the 

center of the screen and to not confound the numerosity of stimuli like a standard fixation 

cross or point might (Harvey et al., 2013). The start of a new trial was indicated by the 

fixation cross turning green for 250 ms. Then, after a pause of 300 ms with just a red fixation 

cross, a pile chart with a diameter of 1 degree-of-visual-angle (dova) was presented for 300 

ms to indicate the probability-of-payout for the coming stimulus. This was always either 55% 

or 100%. Then, after another 500 ms of just fixation cross, a stimulus array of 1-CHF coins 

appeared that represented the potential payoff of the first choice option. The coins had a 

radius of 0.3 dova and were all randomly positioned with their centre within a circular 

aperture with a diameter of 5.25 dova. The coin stimulus array was presented for 600 ms, 

after which only the fixation cross was presented for a jittered duration of either 5, 6, 7, or 8 

seconds. Then, a pie chart indicating the probability of the second payoff was presented for 

300 ms, followed by a 300ms fixation screen, and another coin stimulus array, representing 

the potential payoff of the second option, again for 600 ms. As soon as the second stimulus 

array was presented, participants could indicate their response with their index 

(first-presented option) or middle finger (second-presented option). As soon as they 

responded, they saw a 1 or 2 indicating which option they had chosen for 500 ms. After the 

coin stimulus pile was presented, the remaining duration of the trial was either 4, 4.5, 5, or 

5.5 seconds.  

Stimuli were presented using a projector on a screen at the back of the bore and a hot mirror 

system on top of the coil system (1920 x 1080). The projector screen was 125cm from the 

participant's eyes and was 42 cm wide, corresponding to a field-of-view of approximately 19 

dova.  

TMS stimulation 

At the start of session 2 and 3, the motor hotspot of the left M1 was identified by locating the 

point eliciting the strongest movement-evoked potentials (MEPs) in the first dorsal 

interosseous (FDI) muscle using a figure-of-eight TMS coil. A circular grid was mapped onto 

each participant’s anatomical MRI using a neuronavigation system (BrainSight, Rogue 

Research Inc., Canada), focusing on the hand motor region in the anterior central sulcus. 

The motor hotspot was determined as the grid point producing the strongest FDI MEPs. 

Participants then performed an active motor task (pressing thumb and index finger with 

~20% maximum force) to determine the active motor threshold (AMT), defined as the lowest 

TMS intensity eliciting MEPs ≥ 200 μV in 5 out of 10 consecutive pulses. The AMT was 

 



 

retested visually in the scanner room by observing FDI twitches. The mean AMT was 50.8% 

(SD = 7.9%) outside the scanner and 54.5% (SD = 6.8%) inside the scanner room. 

During combined TMS-fMRI sessions, participants received cTBS by means of a Magenture 

MagPro X100 stimulator (Magventure A\S, Farum, Denmark) targeting either the individual 

numerosity population receptive field (nPRF) cluster in the intraparietal sulcus (IPS) or the 

vertex, determined using neuronavigation. The standard cTBS protocol (Huang et al., 2005) 

involved bursts of three 50 Hz stimuli repeated at 5 Hz for 40 seconds, delivering 600 pulses 

at 80% of the participant’s AMT. The coil (MRi-B91, Magventure) was positioned tangentially 

to the cortical surface, with the handle pointing posteriorly, and stimulation coordinates were 

marked on a latex cap affixed to the participant’s head. The vertex control site was defined 

as the intersection of the left- and right-central sulci in the interhemispheric fissure. 

 

Cognitive computational modeling 

Psychophysical (probit) model 

In line with earlier work (Barretto-García et al., 2023; de Hollander, Grueschow, et al., 2024; 

Khaw et al., 2020; Olschewski et al., 2022; Olschewski & Rieskamp, 2021), we modeled the 

risky choice data using a standard psychophysical function, which models choice 

consistency and average preference as two distinct latent cognitive variables. Note that the 

psychophysical model we use here is a measurement model and thus remains agnostic to 

the precise underlying mechanisms. For example, the noise in choices could be due to noise 

in valuation or perception (Barretto-García et al., 2023). 

Specifically, the psychophysical can be parameterized as a generalized linear model: 

 𝑝(𝑟𝑖𝑠𝑘𝑦_𝑐ℎ𝑜𝑖𝑐𝑒 | 𝑋,  𝐶) ~ Φ(β
0
 +  β

1
 log 𝑋

𝐶 ) 

Here,  is the potential monetary payoff for the risky option,  is the potential payoff for the 𝑋 𝐶

safe option, and  is the standard cumulative probability function of the standard normal Φ

distribution (i.e., probit function).  and  are free parameters that are estimated. Together, β
0

β
1

they quantify (a) the choice consistency (slope ) and (b) the indifference point of the β
1

decision-maker (here we use the the risk-neutral probability . The psychophysical exp(−
β

0

β
1

)

function was estimated using Bayesian estimation and as a hierarchical generalized linear 

model as implemented in the bambi library (v 0.13; Capretto et al., 2022). See de Hollander 

et al. (2024) for more details on the links between psychophysical models and perceptual 

theories of risky choice (e.g., Khaw et al., 2020).  

 



 

The Perceptual and Memory-based model of risky Choice (PMC model) 

We will now briefly discuss our Perceptual and Memory-based model (PMC) of risky choice. 

For a more complete introduction, see de Hollander et al. (de Hollander, Grueschow, et al., 

2024). 

Briefly, the PMC model assumes that decision-makers try to maximize expected payoff, 

based on noisy representations of the choice problem (see also Khaw et al., 2020). More 

formally, when participants decide on a risky option with a payoff  (and a probability of 𝑋

payout ) and a safe option with a payoff of , they only have access to two corresponding 𝑝 𝐶

random variables  and  (their 'neurocognitive representations') that are conditional on 𝑟
𝑥

𝑟
𝑐

: 𝑋/𝐶

 𝑟
𝑥
 ~ 𝑁(𝑙𝑜𝑔 𝑋;  ν) ,  𝑟

𝑐
~ 𝑁(𝑙𝑜𝑔 𝐶;  ν)

Crucially, to optimize their expected value in the long run, decision-makers take into account 

any prior beliefs they have about potential payoffs: 

)   𝑙𝑜𝑔 𝑋,  𝑙𝑜𝑔 𝐶 ~𝑁(μ,  σ2

So, for a given  or , the participant's estimate is a weighted sum of the center of the 𝑟
𝑥

𝑟
𝑐

likelihood and the center of the prior, weighted by their relative dispersion : β

  β = σ2

σ2 + ν2

 Specifically, the conditional expected values of the two options conditional on  are: 𝑟

 𝐸[𝑋|𝑟] =  𝑒
α+β𝑟

𝑥,  𝐸[𝐶|𝑟] = 𝑒
α+β𝑟

𝑐 

where  is a function of the mean and standard deviation of the prior: α

 α =  (1 − β)[μ + (1/2)σ2]
 

(Rational) participants will choose the risky option if and only if  >  or, 𝑝 ×𝐸[𝑋|𝑟] 𝐸[𝐶|𝑟]

equivalently, , or  Since both and  are log  𝑝 +  β𝑟
𝑥

> β𝑟
𝑐

log  𝑝 +  β𝑟
𝑥

− β𝑟
𝑐

> 0 𝑟
𝑥

𝑟
𝑐

(independent) Gaussian random variables, conditional on   and , their difference is a 𝑋 𝐶

Gaussian variable as well: 

 𝑟
𝑥

− 𝑟
𝑐
~𝑁(log 𝑋 − log 𝐶,  2ν2)

Crucially, this means that the probability that the participant chooses the risky option (

) is conditional on  and  can be described using the cumulative log  𝑝 +  β𝑟
𝑥

− β𝑟
𝑐

> 0 𝐶 𝑋

normal distribution : Φ(𝑥)

 Φ(− β−1log𝑝−1−log(𝑋/𝐶)
2⋅ν

)

Now, the more extended PMC model adds two model mechanisms to this derivation: 
Working memory effects and different priors for risky versus safe options.  

 



 

 

1.​ Working memory effects 
Options that are presented earlier in time could be more noisy. Thus, rather than a single 
noise parameter , the PM model contains two noise parameters:  for the option that is ν ν

1

presented first and  for the option that is presented second. Pilot work has shown that ν
2

ν
1

and  are correlated across participants, which can hinder estimation. Moreover, it seems ν
2

plausible that two latent traits underlie the noisiness of the two options: 1) general numerical 
perception noise that drives both, and 2) working memory noise. Thus, to aid parameter 
estimation and improve model interpretability, we reparameterize the model as follows: 

  ν
1

= ν
𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙

+ ν
𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑚𝑒𝑚𝑜𝑟𝑦

  ν
2

= ν
𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙

 

2.​ Different priors 
Risky options have, on average, considerably higher potential payoffs than safe options. For 

example, in the data described here, the mean safe payoff was 15.82 CHF (std. 7.50), 

whereas the mean risky payoff was 36.17 (std. 22.1). Potentially, decision-makers could take 

this into account, and this should improve their expected payoff in the long run (and earlier 

work has shown strong evidence for this; de Hollander, Grueschow, et al., 2024). Therefore, 

the PMC model includes two sets of two parameters describing the priors for risky and safe 

options: ,  and  and . µ
𝑟𝑖𝑠𝑘𝑦

σ
𝑟𝑖𝑠𝑘𝑦

µ
𝑠𝑎𝑓𝑒

µ
𝑠𝑎𝑓𝑒

PMC model summary 

To summarize, the full PMC model as proposed by de Hollander et al. has the following six 

parameters: 

1.​  the amount of noise that is inherent in number perception and pertains both ν
𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙

to numerical magnitude kept in working memory (i.e., n1) and magnitudes that are 

more directly accessible via a stimulus (i.e., n2). 

2.​  the amount of noise that gets added to  when a magnitude ν
𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑚𝑒𝑚𝑜𝑟𝑦

ν
𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙

has to be kept in working memory. 

3.​  the mean of the prior belief over risky options. µ
𝑟𝑖𝑠𝑘𝑦

4.​  the standard deviation of the prior belief over risky options. σ
𝑟𝑖𝑠𝑘𝑦

5.​  the mean of the prior belief over safe options. µ
𝑠𝑎𝑓𝑒

6.​  the standard deviation of the prior belief over safe options. σ
𝑠𝑎𝑓𝑒

 

 



 

Note that although the number of parameters is relatively high, they are strictly necessary to 

explain the strong interaction between order and stake size on risky choice proportions that 

was clearly present in both datasets described in de Hollander et al. (2024), as well as in the 

dataset described in this paper. Furthermore, in line with these qualitative patterns, formal 

model comparisons on all three datasets confirm that the increased complexity of the PMC 

model compared to simpler model was warranted (Khaw et al., 2020). 

The flexible PMC model 

As described in the main text, the original PMC model can only model the impact of cTBS 

stimulation on all perceptual noise, either on both options or only on the first/second option. 

However, since only small numerosities can be visualized in the parietal ANS, it is plausible 

that only the neurocognitive representation of smaller numerical magnitudes were perturbed 

by parietal cTBS. Furthermore, recent evidence suggests that the assumption of Weber's 

law on numerical magnitude representations might be too strict (Prat-Carrabin & Gershman, 

2024; Prat-Carrabin & Woodford, 2022).  

Therefore, inspired by the work of Prat-Carrabin & Woodford (Prat-Carrabin & Woodford, 

2022), who used low-order polynomials to describe a non-linear mapping between numerical 

averages and perpetual noise, we reformulated the PMC model in such a way that the 

perceptual/working memory is no longer estimated as a single noise parameter, but rather as 

a non-linear smooth function. This allows for specific effects of cTBS on specific parts of the 

number line. To ease and regularize parameter estimation, we used spline regression. 

Concretely, the noise for a specific numerical magnitude is modeled as a linear combination 

of  splines: 𝑚

 

 ν(𝑛) =  β
1
𝑠

1
(𝑛) +  β

2
𝑠

2
(𝑛) +  ...  + β

𝑚
𝑠(𝑛) 

where  is the 1st 3rd degree spline, with bounds between 7 and 112 and  are free 𝑠
1

β
1
 ...  β

𝑚

parameters that are estimated. After some initial model comparisons, we chose to use 5 

splines for our purposes. Our implementation in Braincoder uses the widely used 

Patsy-package (Gates, 2023) to define the spline functions. 

More specifically, in the case of the PMC, two flexible noise functions are estimated, one for 

perceptual noise: 

 

 ν
𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙

(𝑛) =  β
𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙,1

𝑠
1
(𝑛) +  β

𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙,2
𝑠

2
(𝑛) +  ...  + β

𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙,𝑚
𝑠(𝑛) 

and one for working memory noise: 

 ν
𝑚𝑒𝑚𝑜𝑟𝑦

(𝑛) =  β
𝑚𝑒𝑚𝑜𝑟𝑦,1

𝑠
1
(𝑛) +  β

𝑚𝑒𝑚𝑜𝑟𝑦,2
𝑠

2
(𝑛) +  ...  + β

𝑚𝑒𝑚𝑜𝑟𝑦,𝑚
𝑠(𝑛) 

 



 

 

This flexible version of the PMC model has a substantially higher number of parameters than 

the original PMC model. Note, however, that the original PMC model can not explain the 

empirical behavioral patterns observed after parietal cTBS (i.e., increased risk-seeking but 

only for specific presentation orders). Moreover, we used a state-of-the-art formal model 

comparison technique, Expected Pointwise Likelihood Densities (Vehtari et al., 2017), to 

make sure that we did not overfit the data and the increased complexity of the model was 

warranted. 

Model estimation 

The PMC and Flexible PMC model are implemented in our Python toolbox bauer 

(de Hollander, Renkert, et al., 2024), which incorporates a variety of psychophysical and 

Bayesian decision models. They are estimated using Bayesian hierarchical estimation, built 

upon the computational graph framework of pymc (Patil et al., 2010), which uses the 

state-of-the art Hammiltonian MCMC sampler NUTS (Hoffman & Gelman, 2011). 

A key design choice was to model individual parameters using an 'offset'-parameterisation. 

The 'offset' parameterization guards against a funnel in parameter space by re-expressing 

individual-level parameters in terms of deviations from the group mean. In traditional 

hierarchical models, directly estimating individual parameters can result in poor identifiability 

when the group-level standard deviation σ is small. This creates a "funnel" shape in the 

posterior distribution, where individual parameters are tightly constrained near the mean, 

leading to high curvature and inefficient sampling. Thus, we use the following definition: 

 θ
𝑝

= µ
θ

+ δ
𝑝,θ

· σ
θ
 

Where  is a participant-specific parameter (e.g.,  or  for participant ) that is θ
𝑝

ν
𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙

µ
𝑟𝑖𝑠𝑘𝑦

𝑝

not directly estimated, but defined as a combination of (a)  – the group mean for that µ
θ

parameter, (b) is the standard deviation of the group distribution, and (c) the σ
θ
 

participant-specific parameter . Here,  are unconstrained, and the hierarchical δ
𝑝,θ

δ
𝑝,θ

structure separates the scale (group-level ) from individual differences. This improves σ
θ

sampling efficiency and mitigates the funnel effect by allowing the model to explore the 

posterior more effectively, even when  is small. σ
θ

To model the experimental effects of session and TMS, we use a random effects approach, 

where each participant has a design matrix that defines a specific parameter value on a 

specific trial, based on a linear combination of intercept- and condition-wise estimates: 

 



 

 θ
𝑝,𝑡 

= θ
𝑝,1

+  
𝑐=2

𝐶

∑ 𝑋
𝑡,𝑐

θ
𝑝,𝑐

 

Here, ​ is the parameter value for participant  on trial ,  is the participant-specific θ
𝑝,𝑐

𝑝 𝑡 θ
𝑝,1

intercept, ​ is the design matrix encoding the experimental conditions for trial  (starting 𝑋
𝑡,𝑐

𝑡

with the second column for condition effects), and  are the participant-specific θ
𝑝,𝑐

condition-wise effects for . 𝑐 = 2,  ...  𝐶

The random effects approach allows both the intercept ( ) and condition-specific effects (θ
𝑝,1

) to vary across participants, capturing individual differences in their responses to the θ
𝑝,𝑐

experimental manipulations. However, each participant-specific effect ​ is drawn from a θ
𝑝,𝑐

group-level distribution: 

), θ
𝑝,𝑐

~ 𝑁(µ
𝑐
, σ

𝑐
2

where  is the group-level mean for condition , and  is the group-level variance. µ
𝑐

𝑐 σ
𝑐

2

This hierarchical structure accounts for between-participant variability while enabling 

inference about group-level effects. By regularizing participant-specific deviations through 

the group-level priors, this approach avoids overfitting, ensures stable parameter estimation, 

and enhances the sensitivity to detect session- and TMS-related effects. 

All the models and their implementation are freely accessible at 

https://github.com/ruffgroup/bauer/tree/main/bauer.  

MRI scanning parameters 

We acquired functional MRI data using the Philips Achieva 3T whole-body MR scanner 

equipped with a 32-channel MR head coil, located at the Laboratory for Social and Neural 

Systems Research (SNS-Lab) of the UZH Zurich Center for Neuroeconomics. In all three 

session, we collected 6 runs of fMRI data with a T2*-weighted gradient-recalled echo-planar 

imaging (GR-EPI) sequence (130 volumes + 5 dummies; flip angle 90 degrees; TR = 2286 

ms, TE = 30ms; matrix size 96 × 70, FOV 240 × 175mm; in-plane resolution of 2.5 mm; 39 

slices with thickness of 2.5 mm and a slice gap of 0.5mm; SENSE acceleration in 

phase-encoding direction (left-right) with factor 1.5; time-of-acquisition 5:05 minutes). During 

the first scanning session, we acquired high-resolution T1-weighted 3D MPRAGE image 

(FOV: 256 × 256 × 170 mm; resolution 1 mm isotropic; Shot TR = 2800 ms; TI = 1098.6 ms; 

256 shots, flip angle 8 degrees; TR = 8.3 ms; TE = 3.9 ms; SENSE acceleration in left-right 

 

https://github.com/ruffgroup/bauer/tree/main/bauer


 

direction 2; time-of-acquisition 5:35 minutes), while participants performed the calibration 

task. 

 

fMRI preprocessing 

Results included in this manuscript come from preprocessing performed using fMRIPrep 

20.2.3 (Esteban et al., 2019) which is based on Nipype 1.6.1 (Gorgolewski et al., 2011, 

2018). 

Anatomical data preprocessing 

The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) with 

N4BiasFieldCorrection (Tustison et al., 2010), distributed with ANTs 2.3.3 (Avants et al., 

2009), and used as T1w-reference throughout the workflow. The T1w-reference was then 

skull-stripped with a Nipype implementation of the antsBrainExtraction.sh workflow (from 

ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal 

fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted 

T1w using fast (FSL 5.0.9; Zhang et al., 2001). Brain surfaces were reconstructed using 

recon-all (FreeSurfer 6.0.1; Dale et al., 1999), and the brain mask estimated previously was 

refined with a custom variation of the method to reconcile ANTs-derived and 

FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle (Klein et al., 

2017). Volume-based spatial normalization to one standard space (MNI152NLin2009cAsym) 

was performed through nonlinear registration with antsRegistration (ANTs 2.3.3), using 

brain-extracted versions of both T1w reference and the T1w template. The following 

template was selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical template 

version 2009c (Fonov et al., 2009). 

 

Functional data preprocessing 

For each of the 6-18 BOLD runs found per participant (across all tasks and sessions), the 

following preprocessing was performed. First, a reference volume and its skull-stripped 

version were generated using a custom methodology of fMRIPrep. A B0-nonuniformity map 

(or fieldmap) was estimated based on two (or more) echo-planar imaging (EPI) references 

with opposing phase-encoding directions, with 3dQwarp Cox and Hyde (1997) (AFNI 

20160207). Based on the estimated susceptibility distortion, a corrected EPI (echo-planar 

imaging) reference was calculated for a more accurate co-registration with the anatomical 

reference. The BOLD reference was then co-registered to the T1w reference using 

bbregister (FreeSurfer) which implements boundary-based registration (Greve & Fischl, 

 



 

2009). Co-registration was configured with six degrees of freedom. Head-motion parameters 

with respect to the BOLD reference (transformation matrices, and six corresponding rotation 

and translation parameters) are estimated before any spatiotemporal filtering using mcflirt 

(FSL 5.0.9; Jenkinson et al., 2002). BOLD runs were slice-time corrected using 3dTshift from 

AFNI 20160207 (Cox & Hyde, 1997). The BOLD time-series were resampled onto the 

following surfaces (FreeSurfer reconstruction nomenclature): fsaverage, fsnative. The BOLD 

time-series (including slice-timing correction when applied) were resampled onto their 

original, native space by applying a single, composite transform to correct for head-motion 

and susceptibility distortions. These resampled BOLD time-series will be referred to as 

preprocessed BOLD in original space, or just preprocessed BOLD. The BOLD time-series 

were resampled into standard space, generating a preprocessed BOLD run in 

MNI152NLin2009cAsym space. First, a reference volume and its skull-stripped version were 

generated using a custom methodology of fMRIPrep. All resamplings can be performed with 

a single interpolation step by composing all the pertinent transformations (i.e. head-motion 

transform matrices, susceptibility distortion correction when available, and co-registrations to 

anatomical and output spaces). Gridded (volumetric) resamplings were performed using 

antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize the 

smoothing effects of other kernels (Lanczos, 1964). Non-gridded (surface) resamplings were 

performed using mri_vol2surf (FreeSurfer). 

Many internal operations of fMRIPrep use Nilearn 0.6.2 (Abraham et al., 2014), mostly within 

the functional processing workflow. For more details of the pipeline, see the section 

corresponding to workflows in fMRIPrep’s documentation. 

fMRI analyses 

To better understand the impact of cTBS on the neural representation of numbers, we used 

an encoding/decoding-modeling approach (Barretto-García et al., 2023; de Hollander, 

Grueschow, et al., 2024; van Bergen et al., 2015; Walker et al., 2020). We fitted a standard 

numerical receptive field (nPRF) model (de Hollander, Grueschow, et al., 2024; Harvey et al., 

2013, 2020) that describes how a voxel  non-linearly responds to specific numerosities  𝑖 𝑠

. Then, using a Bayesian framework, we also extended this encoding model with a 𝑓(𝑠)→𝑥
𝑖

multivariate likelihood function  using a multivariate t-distribution: 𝑝(𝑋|𝑠)

 with , where  is the residual covariance and  is the [𝑥
1
,  ..,  𝑥

𝑛
] ~ 𝑓

1..𝑛
(𝑠) + ϵ ϵ ~ 𝑡(0,  Σ,  𝑑) Σ 𝑑

degrees-of-freedom of the t-distribution. Using an explicit likelihood function allows us to 

decode from trial-to-trial what was the presented payoff magnitude, as well as the acuity of 

the neural response. 

 



 

The main fMRI analysis can roughly be split up in the following steps: 1) Fit a single-trial 

GLM to estimate trialwise measures of the response amplitude across voxels 2) Fit a 

numerical receptive field model (Harvey et al., 2013) to the response, 3) Fit a multivariate 

noise model to the residuals of the nPRF model in a leave-one-run-out cross-validation 

scheme (van Bergen et al., 2015), 4) Obtain a posterior estimate of the payoffs magnitudes 

of unseen data using the noise model and an inverted nPRF model. 

Single trial estimates 

We used the GLMSingle Python package (Prince et al., 2022) to obtain single-trial BOLD 

estimates. Briefly, the GLMSingle package uses cross-validation to do model selection over 

GLMs with a) a library of different hemodynamic response functions b) different 

L2-regularisation parameters to shrink the single trial estimates, combating the issue of 

correlated single trial regressors (Mumford et al., 2012). c) GLMSingle also obtains 

GLMDenoise (Kay et al., 2013) regressors based on the first n PCA components in a set of 

noise voxels. Noise voxels are defined as having low explained variance in the task-based 

GLM. The number of PCA components is selected via cross-validation. 

As input to GLMSingle, we modeled the first and second payoff presentations separately. For 

the second payoff presentations, we modeled all trials with the same numerosity as being in 

the same condition, to aid GLMSingle with cross-validation (similar numerosities should have 

similar responses). After extensive analysis piloting, we chose to not include any additional 

confound regressors (e.g. motion parameters, RETROICOR parameters or aCompCorr 

regressors) in addition to the GLMDenoise confound regressors, as additional regressors did 

not lead to  robustly increased (or even decreased) decoding accuracy and GLMDenoise. 

This is in line with earlier work on GLMDenoise (Kay et al., 2013) and the related 

aCompCorr approach (Behzadi et al., 2007). 

Numerical receptive field modelling 

We fitted a numerical population receptive field (nPRF)  model to all voxels in the brain using 

the braincoder toolbox (de Hollander et al., 2020). We fitted a nPRF model for each session 

separately (so using 120 single trial estimates) for all sessions separately. The method is 

described in detail elsewhere (Barretto-García et al., 2023; Harvey et al., 2013), so we only 

briefly describe it here. First, we estimate the mean , standard deviation , amplitude  and µ σ 𝐴

baseline  of a log-normal receptive field for every voxel in the brain separately, to predict 𝐵

the BOLD response of these voxels to different numerosities. 

 𝑓
𝑖
(𝑥) = 𝐵

𝑖
 + 𝐴

𝑖
 exp  (− (log 𝑥 −  (log  

µ
𝑖

1+σ
𝑖
2/µ

𝑖
2 )

2

/ (2 log(1 + σ
𝑖
2/µ

𝑖
 ))

 



 

The second part of this equation is a parameterisation of the log-normal probability density 

function where  and  are the mean and standard deviation of the distribution in natural µ σ

space. Although this parameterisation is somewhat exotic, it is highly useful when plotting 

the estimated preferred numerosities and their dispersion, for example on the cortical 

surface. 

We first fit the model by using a grid-search: We correlate the single trial estimates for the 

first payoff stimulus presentation with the predictions of a large grid of 60 -s between 5 and µ

80 and 60 -s between 5 and 40. We then estimate  and  linear least-squares on the σ 𝐼 𝐴

best-correlating  and -parameters. Finally, we used gradient descent (Kingma & Ba, 2014) µ σ

to refine parameters further. We then did the same procedure with a leave-one-run-out 

cross-validation scheme (so fit the model 6 times, always leaving one run out), to estimate 

the cross-validate explained variance, cvR2. Cross-validated R2 was used to distinguish 

'noise' from 'signal' voxels. Specifically, within a 2cm-radius ROI around the targeted cluster, 

we selected all voxels that showed a cross-validated R2 larger than 0 for further inspection 

(i.e., parameter comparisons across conditions as well as decoding). 

Decoding 

After voxel selection, we used a leave-one-run-out cross validation scheme where the nPRF 

model was fitted to all runs but the test run, after which also a multivariate noise model was 

fitted to the residual signals. Specifically, we fitted the following covariance matrix: 

, Σ = ρττ𝑇 + (1 − ρ)𝐼 ∘ττ𝑇 + σ𝑊𝑊𝑇

as well as the degrees-of-freedom of a 0-centred, multivariate t-distribution. Briefly,  is a τ

vector as its length the number of voxels ( ) in the ROI. It pertains to the standard deviation 𝑛

of the residuals of each voxel. Thus,  determines to which extent all voxels correlate with ρ

each other (  is the covariance matrix of perfectly correlated voxels, whereas  ττ𝑇 𝐼 ∘ττ𝑇

corresponds to a perfectly diagonal matrix/spherical covariance).  is a square matrix of 𝑊

. Each element  is the product of the receptive fields of voxels  and  across 𝑛 ×𝑛 𝑊
𝑖,𝑗

𝑖 𝑗

stimulus space (  with  being the entire stimulus space . Thus, the 𝑓
𝑖
(𝑆) 𝑓

𝑗
(𝑆)𝑇 𝑆 [7,  6,,  ..,  112]

free scalar parameter  determines to which extent voxels with overlapping receptive fields σ

have more correlated noise. 

Once the noise model is fitted, we can now determine a likelihood function for any 

multivariate BOLD pattern  and for any numerical stimulus : 𝑋 𝑠

 𝑝(𝑋|𝑠) = 𝑡(𝑋 −  [𝑓
1
,  𝑓

2
,  ...,  𝑓

𝑛
(𝑠)],  Σ,  𝑑)

We assume a flat prior on all integers between 7 and 112, and can therefore evaluate this 

likelihood on all these integers and normalize the resulting probability mass function (pmf) to 

 



 

integrate to 1. We take the expected value of this pmf to be our estimate of the presented 

stimulus. We then correlated the actual stimulus numerosity with the estimated numerosity 

within every run and took the average correlation across all six runs to get the decoding 

performance for a given subject/session (Etzel et al., 2013). 

 

Code availability 
All data of this study will be published on openneuro as soon as the study is published. 

 

All the code used in this study can be found online on github: 
https://github.com/Gilles86/tms_risk/  
 
Our computational cognitive models are implemented in the open-source Python library 
bauer 
https://github.com/ruffgroup/bauer/tree/main 
 
The used nPRF model and decoding software algorithms are implemented in the 
open-source Python library braincoder 
https://braincoder-devs.github.io/ 
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