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Psilocybin alters visual contextual computations
Marco Aqil1,2,3, Gilles de Hollander4, Nina Vreugdenhil1,2,3, Tomas Knapen*,1,2,3, and Serge O. Dumoulin*,1,2,3,5

1Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands.; 2Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for
Neuroscience, Amsterdam, the Netherlands; 3Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; 4Zurich Center
for Neuroeconomics, Department of Economics, University of Zurich, Switzerland; 5Experimental Psychology, Utrecht University, Utrecht, Netherlands

Psilocybin alters perception and brain dynamics. Con-
textualcomputationsareubiquitous in thebrain. Here,
we investigate the effects of psilocybin using psy-
chophysics, ultra-high field functional MRI, and com-
putational modeling. We find that 1) psilocybin alters
contextual perception in the Ebbinghaus illusion, 2)
psilocybin alters contextual modulation in cortical re-
sponses to visual stimuli, and 3) we propose a compu-
tational model capable of capturing and linking these
changes. Leveraging vision as a beachhead, our find-
ings highlight the alteration of contextual computa-
tions as a potential general mechanism underlying
psychedelic action.
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Teaser: Psilocybin alters visual-contextual computations, a potential general
computational mechanism for psychedelic effects in the human brain.
Psilocybin is a serotonergic hallucinogen or classic psychedelic. Pre-1

vious studieshave shown thatpsilocybin altersperceptionandbrain2

dynamics 1–5. Yet, the underlying computational changes remain3

unclear. Contextual computations are ubiquitous in the brain, and4

computations first discovered in vision have later been observed in5

other sensory and cognitive domains6–9. Here, we investigated the6

effects of psilocybin in 5mg and 10mg doses with psychophysics,7

ultra-high-field fMRI, and computationalmodeling in a randomized,8

double-blind, placebo-controlled, crossover design. We explicitly9

tested whether and how psilocybin alters visual-contextual compu-10

tations in brain and behavior, and provided an explicit mathemati-11

cal model of cortical responses at the single-timecourse level. Our12

findings highlight the alteration of contextual computations as a po-13

tential general and parsimonious computational mechanism under-14

lying the effects of psychedelics on brain andbehavior.15

Psilocybin alters contextual perception16

To examine the effects of psilocybin on contextual perception, we17

used the Ebbinghaus illusion 10,11. In this classic perceptual illusion,18

the perceived size of a target stimulus is altered by the presence of19

a visual context. Previous studies have related the Ebbinghaus illu-20

siontoanatomicalandfunctionalpropertiesofprimaryvisualcortex21

(V1) 11–13. Here, participants were asked to report which of two con-22

currently presented visual stimuli was larger, whilemaintaining fixa-23

tionona central cross, followingplacebo, 5mg, and 10mgpsilocybin24

administration (Fig 1). In control trials, both stimuli were presented25

in isolation (Fig 1a, bottom-right inset). On test trials, one of the two26

stimuli was presented within a context of larger stimuli, making it27

appear perceptually smaller (Fig 1a, top-left inset). Psilocybin sig-28

nificantly increased the Ebbinghaus illusion by 39% (5mg), and 59%29

(10mg) relative to placebo (Fig. 1b). Relative to true stimulus size,30

the Ebbinghaus illusion was 6% with placebo, 8.3% with 5mg psilo-31

cybin (p: 0.012), and 9.6% with 10mg psilocybin (p: 0.005) (Fig. 1c).32

The change in the Ebbinghaus illusion induced by psilocybin could33

not be explained by potential concurrent changes in noise or lapses,34

whichwere also included in the psychophysicalmodel (Methods, Ex-35

tended Data 1). Perception in control trials (i.e. stimuli presented36

withoutcontext)wasunalteredbypsilocybin (Fig 1a shadedgrayand37

ExtendedData1), showingthat theeffectofpsilocybinwasspecificto38

contextual perception. In sum,we found that psilocybin altered con-39

textual perception, specifically increasing the Ebbinghaus illusion.40

This finding highlights the alteration of contextual computations as41

a potential mechanism underlying the effects of psilocybin on per-42

Fig. 1. Psilocybin alters contextual perception in the Ebbinghaus illusion.
a, Participants were asked to judge which one of two concurrently presented
stimuliwas larger. Incontrol trials, stimuliwerepresentedin isolation(bottom-
right inset), and perception was unaltered by psilocybin (shaded gray, Ex-
tended Data 1). In test trials, one stimulus was presented within a context
of larger stimuli (top-left inset), resulting in a smaller perceived size (Ebbing-
haus illusion). Psychometric data for test trials (squares), estimated psycho-
metric curves (colored lines), and 95% highest density intervals for the pos-
terior model predictions (shaded color) are shown for placebo (cyan), 5mg
(magenta), and 10mg (red) psilocybin doses. b, Psilocybin significantly in-
creased the Ebbinghaus illusion by 38% (5mg dose) and 59% (10mg dose) rel-
ative to placebo. c, Relative to true stimulus size, the Ebbinghaus illusion was
6%with placebo administration, 8.3%with 5mgpsilocybin (p: 0.012), and 9.6%
with 10mg psilocybin (p: 0.005). One asterisk indicates p<0.05, two p<0.01
(Bayesian p-value, one-sided test).

ception, and demonstrates a novel neuromodulatory contribution 43

to the Ebbinghaus illusion. 44

Psilocybin alters contextual brain responses 45

Toprobe the effects of psilocybin on contextual brain responses, we 46

measured 7T fMRI responses to a simple visual stimulus (Fig 2a), a 47

contrast-defined checkerboard bar sweeping across the central 10 48

degrees of visual field in eight directions (Fig 2b) 14,15. Participants 49

maintained fixation, performed a dot-color change task at fixation, 50

and eye movements were recorded (Fig 2b, Extended Data 2). Re- 51

sponsesweremapped to individual cortical surfaces, andvisual field 52

maps drawn on the basis of individual polar angle and eccentricity 53

maps (Fig 2c) 16. Previous studies have identified a variety of contex- 54

tual modulations such as surround suppression and nonlinear spa- 55

tial summation in brain responses to simple visual stimuli9,15,17,18. 56

Surroundsuppression(Fig2d) isaparticular formofcontextualmod- 57

ulation, measurable with imaging or recording methods, thought 58

to arise via a combination of lateral and feedback connectivity, re- 59

lated to alpha frequencies in occipital regions, and altered in neuro- 60

logical and psychiatric conditions8,9,15,17,19,20. At the level of single- 61
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Fig. 2. Psilocybin alters contextual brain responses, reducing surround
suppression in early visual ROIs. a, 7T fMRI responses were recorded for all
participants while viewing a simple visual stimulus (moving bar) in individual
sessions with placebo, 5mg, and 10mg psilocybin doses in randomized order.
b,Participantswere instructedtofixateandperformedadot-colorchangetask
at fixation while a checkerboard bar moved through the screen in TR-locked
steps in 8 different directions across the central 10 degrees of visual field and
eye movements were recorded (Extended Data 2). c, Responses were resam-
pled to individual anatomical surfaces obtained, and visual ROIs defined on
the basis of individual polar angle and eccentricity maps. Asterisk on cortical
surface indicates location of the timecourse shown in d, Example timecourse
from a single participant, single cortical location in V1, in placebo and 10mg
psilocybin doses. On top, stylized representation of moving-bar stimulus. At
the single timecourse level, response activation was near-identical in placebo
and 10mgpsilocybindoses. surround suppression, thenegativedeflectionsof
timecourseflanking thecentral positive activationpeak,was systematically re-
duced in 10mg doses (highlighted by arrows). At the visual-field-map level, e,
Representative responses in V1 (centeredwith respect to eachbar-pass and av-
eraged) f, V2 and g, V3 showed significant reduction of surround suppression
while activationwas not significantly altered. Timepointswith statistically sig-
nificant differences (p<0.01) with respect to placebo are shown as circles with
a black outline (Fisher permutation test, two-sided, 106 permutations). Con-
secutive timepoints with significant differences are underlined with the color
of the respective dose condition.

timecourses, we found that psilocybin altered contextual brain re-62

sponses, specifically reducing surround suppression (Fig 2d, empha-63

sisedbyblackarrows). At the levelofentireROIs,we foundthatpsilo-64

cybinsignificantly reducedsurroundsuppression inearlyvisualfield65

maps (V1-3), while leaving activations largely unchanged (Fig 2e-g,66

emphasised by black arrows. Time points with black outline indi-67

cate p<0.01 difference with respect to placebo). Representative re-68

sponses for all visual field maps and clusters are shown in Extnded69

Data 3. In sum, we found that psilocybin altered contextual corti-70

cal responses to visual stimuli, specifically reducing surround sup-71

pression in early visual field maps. This finding highlights the alter-72

ationof contextual computations as apotentialmechanismunderly-73

ing the effects of psilocybin in the human brain, and demonstrates a74

novel neuromodulatory contribution to surround suppression.75

Fig. 3. Computational model captures psilocybin effects on contextual
brain responses through variation in specific modulatory parameter. a,
Schematic of the DN pRF model (Eq. 1). The model prediction is defined as
the ratio of activation and normalization components, convolvedwith a fitted
hemodynamic response function (Methods). Activation and normalization
termsareobtainedas thedot-productsof2DGaussians invisual spacewith the
stimulus. At each cortical location, the optimal model prediction is obtained
by maximizing Variance Explained (R2) as a function of the model parame-
ters. b, The activation constant (parameter b) modulates surround suppres-
sion. A higher value of the activation constants (dashed profile) increases sur-
round suppression. c, Example individual corticalmaps of variance explained
in placebo, d, 5mg, and e, 10mg showing the model’s ability to capture vari-
ance in brain responses is near-identical. f, Example individual cortical maps
of eccentricity in placebo, g, 5mg, and h, 10mg showing the basic retinotopic
structure of brain responses is near-identical. Psilocybin did not significantly
alter i, variance explained j, activation pRF sizes, k, normalization pRF sizes,
nor l, the normalization constant in V1.m,Psilocybin significantly and system-
atically decreased estimates of the activation constant (parameter b) in early
visual field maps (V1-3), consistent with the observation of reduced surround
suppression. Asterisks indicate p<0.01 (Fisher permutation test, two-sided,
106 permutations).

Computationalmodel capturespsilocybin effects 76

To model cortical responses and the changes induced by psilocy- 77

bin, we used a recently introduced population receptive fields (pRF) 78

model9,14 based on divisive normalization (Fig 3a, Eq 1). We have 79

previously shown that the model captures a variety of contextual 80

modulations observed in cortical responses such as surround sup- 81

pressionandnonlinearspatialsummationthankstolocalvariationin 82

its modulatory parameters, activation and normalization constants 83

(Fig 3a,b Eq 1 parameters b andd) 15. In particular, the activation con- 84

stant (parameterb in Fig 3a,b andEq 1)modulates surround suppres- 85

sion(Fig3b). Identically to 15,21,wefitmodelparameters tomaximize 86

variance explained at each cortical location, for each participant, in 87

placebo, 5mg, and 10mg doses (Methods). The changes elicited by 88

psilocybin in cortical responses were particularly evident in the re- 89

duction of surround suppression in early visual fieldmaps, while ac- 90

tivationswere near-identical (Fig 2e-g). Given this pattern of results, 91

we expected estimates of the activation constant should be reduced 92

in psilocybin conditions relative toplacebo. Confirming this hypoth- 93

esis, we found individual cortical maps ofmodel variance explained 94

and visual-field eccentricity remained near-identical under psilocy- 95

bin (Fig 3c-h). We found no significant alterations inmodel variance 96

explained, activation pRF size, normalization pRF size, and normal- 97

ization constant in V1 (Fig 3i-l). We found a significant, systematic 98

decrease in the model activation constant in early visual field maps 99
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(V1-3) in both psilocybin doses (Fig 2m). This result could not be ex-100

plained by potential concurrent changes in noise or hemodynamic101

response shape, which was also fitted at each cortical location, and102

verified with a crossvalidated approach (Extended data 4). The full103

model parameter estimates for all visual field maps and clusters are104

reported in (Extended data 5). In sum, amodel-based approach pro-105

vided additional evidence that psilocybin altered contextual compu-106

tations in cortical responses, particularly in the formof reduced sur-107

round suppression. Themodel algorithmically explainedpsilocybin108

effects through variation in a specificmodulatory parameter (the ac-109

tivation constant, parameter b in Fig 3a,b and Eq 1).110

Psilocybin, like other classic psychedelics, causes a variety of111

dose-dependent visual subjective phenomena 22. We hypothesised112

that the observed reduction in surround suppression might be a113

keymechanismunderlying the subjectivevisualphenomenaelicited114

by psychedelics. In this ”unsuppressed” state, the visual system115

would allow increasing amounts of activity, normally quenched by116

surround suppression, to instead persist and propagate. Consistent117

with this hypothesis, we found significant correlations between the118

psilocybin-induced change in V1 estimates of the model activation119

constant, and subjective intensity of visual phenomena elicited by120

psilocybin (Extended Data 6). In particular, the change in activa-121

tion constant significantly correlated with ratings of questionnaire122

items related to classic psychedelic visual phenomena, such as ’I see123

geometric patterns’ and ’I see movement in things that aren’t really124

moving’ (Extended Data 6), while generally lacking correlation with125

non-visual questionnaire items (Extended Data 8). We hypothesise126

that the change in themodel activation constant represents an algo-127

rithmic hallmark of amore general effect of psychedelics on contex-128

tual computations, and particularly on surround suppression,mani-129

fested here in early visual fieldmaps.130

Surround suppression is a particular type of contextual modula-131

tion, involving both circuitry and neuromodulatory components 7,8.132

A key function of surround suppression is to increase tuning preci-133

sion by contextually decorrelating responses8,23. Previous studies134

have found that the anatomical size of V1 (inversely) correlates with135

the Ebbinghaus illusion 12,24. The increased degree of response cor-136

relation and functional overlap implied by a smaller cortical space137

being allocated to the same visual field have been suggested to be138

the relevant underlying functional properties 11,13,25. Here, we found139

that the Ebbinghaus illusion is increased by psilocybin (Fig. 1), while140

surround suppression is reduced in cortical responses (Fig. 2), an141

effect captured by a decrease in the activation constant of the nor-142

malizationmodel (Fig. 3). The observed reduction in surround sup-143

pression implies an overall increase in functional response overlap,144

and reduction in tuning precision. As such, we hypothesised that145

the psilocybin-induced change in surround suppression could un-146

derlie the change in Ebbinghaus illusion we observed here. Consis-147

tentwith this hypothesis, we found significant correlations between148

the psilocybin-induced change in V1 estimates of the model activa-149

tion constant, and the increase in the Ebbinghaus illusion (Extended150

data 6). A well-known characteristic of psychedelic states is an in-151

creasedsensitivity to thecurrentcontext 26. Wehypothesise that the152

alteredcontextualmodulation in theEbbinghaus illusion represents153

aperceptual hallmarkof amore effect of psychedelics on contextual154

computations,manifested here in the visual domain.155

We chose to use a computational model of population receptive156

fields based on divisive normalization 7,15. The changeswe observed157

in brain responses appeared primarily in the form of surround sup-158

pression, andprimarily in early visual ROIs (Fig. 2). Othermodels ca-159

pable of capturing surround suppression, such as the Difference of160

Gaussiansmodel 17, couldhavealsobeenused. However, thenormal-161

izationmodel is uniquely able to simultaneously capture a variety of162

contextualmodulations,not limitedtosurroundsuppression 15. The163

normalizationmodel outperforms othermodels throughout the hu-164

man visual system, including the DoG model in early visual ROIs 15.165

The modulatory parameters of the normalization model correlate166

with neurotransmitter receptor densities, demonstrating ties with167

the underlying biology 21. Other contextual modulations, such as168

nonlinear spatial summation, could have potentially been concur-169

rently affected by psilocybin. If so, they would have confounded 170

models unable to capture nonlinear contextual modulations, such 171

as the DoG model. The normalization model allowed us to ensure 172

that the changes we observed in the data were specific to surround 173

suppression, andnot confoundedbyadditional potential changes in 174

other contextualmodulations. For these reasons, we concluded the 175

normalization model would be the best-available choice to capture 176

the changes inducedbypsilocybin. 177

Visual spatial computationsprovideageneral scaffolding forcog- 178

nition 27, with theearly visual cortexactingasa ”multiscale cognitive 179

blackboard” 28. Visual spatial population receptivefields arepresent 180

in occipital, parietal, ventral, temporal, frontal areas9,16,29,30, and 181

have recently been observed even in regions generally thought to 182

be amodal, such as the default mode network 31, at the interface of 183

perception and memory processing 32, in the cerebellum 33, and in 184

thehippocampus 34. Alterations in lower levels of thebrain’s founda- 185

tional visual-spatial cognitive architecture, suchas thoseweobserve 186

here, are hence likely to have far-reaching implications on brain dy- 187

namics, perception, and subjective experience. 188

Alterations in contextual computations appear as an underly- 189

ing thread linking our findings to existing clinical, phenomenolog- 190

ical, and neuroscientific lines of evidence. Contextual computa- 191

tions 35, divisive normalization 7, surround suppression8, and recep- 192

tivefields6 areubiquitous and fundamental propertiesof cortical re- 193

sponses in a variety of sensory and cognitive domains. Contextual 194

factors have long been known to play a crucial role in psychedelic 195

experience and therapeutics 5,26. Studies in animal models have 196

shown that psychedelics reopen a critical period for contextual re- 197

ward learning 36. Psychedelics show promise in the treatment of de- 198

pression 37. Depression has been characterized as stemming from 199

an impaired ability to combine current input with contextual fac- 200

tors 35. In light of the existing literature, our findings highlight the 201

alteration of contextual computations as a potential general compu- 202

tational mechanism underlying the action of psychedelics in the hu- 203

manbrain. We speculate that the compoundeffects of an apparently 204

simple computational alteration, ubiquitously present throughout 205

sensory and cognitive domains and at various stages of the brain’s 206

functional hierarchy, might hold the potential to underlie the diver- 207

sity and apparent paradoxicality of psychedelic effects. 208

Our study is limited in several respects. First, the BOLD signal is 209

determinedbyboth neuronal andhemodynamic factors, whichmay 210

also be altered by psilocybin. To address this directly, we fitted the 211

HRF shape to vary at each cortical location, for each participant, at 212

each dose, ensuring that hemodynamic changes are captured sep- 213

arately from computational changes. We also carried out a cross- 214

validated comparison of models including purely neural changes, 215

purely hemodynamic changes, both, and neither. These analyses 216

showed that the alterations in cortical responses elicited by psilo- 217

cybin could not be explained by potential concurrent changes in 218

noise or hemodynamics (Extended Data 4,5). Second, we investi- 219

gated 5mgand 10mgdoses of psilocybin, while previous neuroimag- 220

ing studies in healthy and clinical populations have generally inves- 221

tigated higher doses (up to 25mg) 38. At higher doses, it is likely 222

that impairments in task performance or fixation ability would con- 223

found the assessment of computational changes elicited by psilocy- 224

bin. Our results showed that intermediate doses of psilocybin are 225

sufficient to induce systematic changes in perception and cortical 226

responses, without significantly impairing fixation ability or perfor- 227

mance on simple tasks (Extended Data 2). Third, psilocybin and its 228

activemetabolitepsilocinbindtomultiple receptors, includingboth 229

5-HT2Aand5-HT1A.Ourstudywasnotdesignedtoadjudicate ifan in- 230

dividual receptor (or a combination thereof)was responsible for the 231

effectsofpsilocybinweobserved. Nonetheless, thisquestionmaybe 232

addressed using our approach in combination with chemical block- 233

ers of individual receptors. Fourth, we focused on spatial vision, al- 234

lowing psilocybin’s effects on visual-contextual computations to un- 235

equivocally manifest. This approach could be extended in order to 236

assess the alteration of contextual computations as a potential gen- 237

eral computational mechanism in other sensory and cognitive do- 238

mains. 239
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In this study, we found that psilocybin alters contextual percep-240

tion in the Ebbinghaus illusion, contextual modulations in brain re-241

sponses tovisual stimuli, andproposedacomputationalmodelcapa-242

ble of capturing and linking these changes. We concluded that psilo-243

cybin alters visual-contextual computations. Our findings highlight244

the alteration of contextual computations as a potential general and245

parsimoniousmechanism underlying the effects of psychedelics on246

brain andbehavior.247

Materials andMethods248

Recruitment andexclusion criteria249

Participationwassolicitedviapubliconlinemeans. Interestedpartic-250

ipants completed anonline form,whichwasused as an initial screen-251

ing for exclusion criteria. Participants received a small monetary252

compensation for their participation in the study. Exclusion criteria:253

agebelow21years, ageabove55years,nopriorexperiencewithhallu-254

cinogens, previous adverse reactions to hallucinogens, previous ad-255

verse responses to MRI, personal or family history of psychiatric or256

neurological conditions, ongoinguseofmedicationsor recreational257

drugs. Participantswereaskedtorefrain fromtheuseof recreational258

drugs in the four weeks leading up to the experiment and between259

the experimental session. Participants that did not meet any exclu-260

sion criteria based on the online questionnaire responses were in-261

vited to the Spinoza Centre for further in-person screening. Partic-262

ipants who did not meet any exclusion criteria based on online and263

in-personscreeningparticipated inapreliminarydatacollection ses-264

sion. During this session, we collected two anatomical scans, one265

functional scan, andensuredparticipantshadnormalfixationability266

and eyemovement traces and normal or corrected-to-normal visual267

acuity. Two prospective participants were excluded at this screen-268

ingstage,beforebeingenrolled in thestudy,becauseof thepresence269

ofpotentially abnormal eyemovements (nystagmus). This selection270

process ensured that all participantswere not naive toMRI scanning271

and to the experimental tasks, prior to confirming their enrollment272

in the study.273

Participants274

Eighteen participants (aged 22 to 45 years, eight female) were en-275

rolled in the study. All participants had normal or corrected-to-276

normal visual acuity. All studies were performed with the informed277

written consent of the participants and were approved by the Medi-278

cal Ethics Committee (METC) of the Amsterdam University Medical279

Centre. Data from five participants were excluded from analysis be-280

cause of the presence of scanner artifacts (coil failures) during one281

or more of their sessions. Data from one participant were excluded282

from the analysis due to excessive headmotion in one session. A to-283

tal of twelve participants were included in the final analysis of fMRI284

data.285

Experimental design286

The experiment followed a randomized, double-blind, placebo-287

controlled, crossover design. Each participant underwent three ex-288

perimental sessions and was administered placebo, 5mg, and 10mg289

of psilocybin, in random order, at least two weeks apart from each290

other.291

Psychophysicalmodel292

In the Ebbinghaus illusion, participants were asked to fixate on a293

central cross and presented white circles on an isoluminance back-294

ground for a short interval (0.4s). For each presentation, they were295

asked to report via button press whether they perceived the right or296

left circle as larger. In control trials, the twocircleswerepresented in297

isolation. In test trials, one of the circles was presented surrounded298

by a set of larger circles. We estimated a standard psychophysical299

model, in which the perception of the two stimulus features (the ra-300

dius of the reference stimulus rr and the embedded stimulus re) are301

formally described as samples from twonormal distributions:302

rr ∼ N (r, σ2), re ∼ N (e + δ, σ2),303

where r is the actual radius of the reference stimulus and e is the304

actual radius of the embedded stimulus; σ2 quantifies the inherent305

perceptualnoiseduetosensoryprocessing limitationsorneuralvari- 306

ability in representing the stimulus radii; δ captures systematic bi- 307

ases in perceiving the radius of the embedded stimulus, potentially 308

driven by contextual effects in the Ebbinghaus illusion. The proba- 309

bility thataparticipant indicates thereferencestimulus is larger than 310

theembeddedstimuluscanbedescribedbytheirdifferencedistribu- 311

tion: 312

p(rr > re | r, e, σ2, δ) = Φ
(

r − e − δ

σ

)
, 313

whereΦ is the standard normal cumulative density function. 314

Toaccount for lapses,wealsoestimatedtheproportionof trialsp, 315

onwhichtheparticipantdidnotprocess thestimulusandresponded 316

randomly: 317

p(rr > re | r, e, σ2, δ, p) =
1
2

p + (1 − p)Φ
(

r − e − δ

σ

)
. 318

The noise parameter σ2, the bias parameter δ, and the lapse pa- 319

rameterpwereestimated inahierarchical frameworkusing theNoU- 320

Turn (NUTS)HamiltonianMCMCsampler as implemented in pymc 39. 321

The psychometric model was implemented in the Python package 322

bauer40. 323

For a given parameter θ (e.g., σ2 or δ), the participant-session- 324

specific parameter of participant p at session twasmodeled as: 325

θp,t = µ + ζσ, 326

where µ is the group mean parameter, σ is the standard deviation 327

of the group distribution, and ζ is an individually determined off- 328

set parameter. This offset-based specification of the hierarchical 329

model was chosen to prevent likelihood ”funnels” that affect high- 330

dimensional hierarchicalmodels41. 331

To estimate the parameters separately for the three dose condi- 332

tions (placebo / 5mg / 10mg), with and without surround, we used a 333

regressionapproach42. Agivenparameterθp,s,g (e.g., δorσ2) forob- 334

server pon a trial t anddosage dwasmodeled as: 335

θp,s,g = θp,0 + θp,dxp,d + θp,cxp,c + θp,d:cxp,dxp,c. 336

Wherexp,c indicated the condition (with orwithout surrounding cir- 337

cles) of a trial andxp,d thedosage (0/5/10mg). Thevaluesof (and the 338

uncertainty in) the estimates of θ could then be used to quantify the 339

relative effect of the different doses, with andwithout surround. We 340

usedmildly informative priors on all group distribution parameters: 341

For the precision parameterσ: 342

µν ∼ N (softplus−1(1.0), 10.0), σν ∼ HalfCauchy(0.25). 343

Because σ should be bounded between [0, ∞), we estimate it via ν 344

on the unbounded scale and then brought it to the bounded scale 345

using the softplus function to evaluate the likelihood function: σ = 346

softplus(ν), where softplus(x) = ln(1 + ex) is the softplus function 347

and softplus−1 is its inverse.) 348

For the bias parameter δ we used the following hierarchical pa- 349

rameters 350

µδ ∼ N (0, 10.0), σδ ∼ HalfCauchy(0.25). 351

For the lapse parameter p: 352

p′ ∼ N (logit−1(0.02), 1.0), p′ ∼ HalfCauchy(0.25). 353

(Here, p was bounded between 0 and 1 by using the logit 354

function:p(x) = 1
1+e−p′ , and logit−1 is the logistic function. 355

Themedian of our prior on pwas thus 0.02.) 356

AnatomicalMRI scans 357

T1-weighted and T2-weighted structural MRI data were acquired us- 358

ing a Philips Achieva 7T scanner with an 32-channel Nova Medical 359

headcoil, at a resolutionof0.7mmisotropic. Freesurfer 7.2 recon-all 360

was used to obtain native cortical surface reconstructions for each 361

participant43. The software makes use of the T2w image to refine 362

the segmentation obtained by T1w alone, particularly in the exclu- 363

sion of the sagittal sinus and at the pial surface border. Anatomical 364

segmentationswere further refinedmanuallyusingFreesurfer’s soft- 365

ware Freeview43. 366
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FunctionalMRI scans367

Functional MRI data were acquired using a Philips Achieva 7T scan-368

ner with an 32-channel Nova Medical head coil. Functional scans369

were carried out with a 3D EPI sequence, with a repetition time (TR)370

of 1.32s, and spatial resolution of 1.79mm isotropic. The first 10s371

of recorded data at the beginning of each scan were automatically372

discardedby the scanner to avoid start-upmagnetization transients.373

Each pRFmapping scan lasted for a total of 255 TRs (approximately374

336s). For each participant, on each experimental session, we col-375

lected six pRFmapping scans. At the end of each scan, a top-up scan376

with opposing phase-encoding direction was recorded, to perform377

susceptibility distortion correction.378

FunctionalMRIdatapreprocessing379

Rawscannerdatawasconvertedtoniftiusingdcm2niixandstored in380

BIDS format44. Thermal denoisingwas appliedusing theNORDIC al-381

gorithm45. Subsequent functional preprocessing steps (susceptibil-382

ity distortion correction, coregistration, resampling of volumetric383

data to fsnativesurfaces)wereperformedusing fMRIprepv20.746,47.384

The first 20 principal components of the anatomical and temporal385

physiological regressors computed by fMRIprepwere regressed out386

usingpybest48. Finally,BOLDtimecourses in fsnativesurfacespaces387

were converted to percent signal change and highpass filtered to re-388

movedriftsusingacosinefilter (regressingout thefirst threecompo-389

nents).390

Headmotion391

We estimated motion parameters using MRIQC49. We defined ex-392

cessive motion as a mean frame displacement across scans in a ses-393

sion exceeding one third of the voxel size (0.6mm) or a mean of the394

maximal framedisplacementacrossscans inasessionexceedingone395

voxel size (1.8mm).396

Population receptivefieldmodeling397

Population receptive field modeling followed the same procedure398

as 15,21 and was carried out using dedicated software prfpy 50 and399

prfpytools 51. We used a standard pRFmapping stimulus, a drifting400

checkerboardbar 14,15. The stimulus aperture subtended 10degof vi-401

sual angle. The checkerboard pattern inside the bar moved parallel402

to the bar orientation, and the bar itself stepped in the perpendicu-403

lar direction at every TR (1TR=1.32s). Eight bar configurations were404

presented (two cardinal and two diagonal directions, in twomotion405

directions). The width of the bar subtended 1.25deg of visual angle;406

thebarsweptacrossthestimulusaperture in20TR-lockedequal-size407

steps. A period of 15 TRs of mean luminance (0% contrast) was pre-408

sented every twobarpasses. Mean luminanceperiodsof 15 TRswere409

presentedat thebeginningandendofeachscan. A small fixationdot410

(0.1deg) was presented in themiddle of the screen. This fixation dot411

changed color (red to green) at semirandom time intervals, and par-412

ticipants reported this changevia button-press. TheDNmodel equa-413

tionwas defined as 15414

pDN (t) =
a G1 · S + b

c G2 · S + d
−

b

d
. [1]415

The spatial dependence of Gaussian pRFs G ≡ G(x, y) and the spa-416

tiotemporal dependence of stimuli S ≡ S(x, y, t) are omitted for417

brevity, andwedenote:418

G1,2 = e
− (x−x0)2+(y−y0)2

2σ2
1,2 , G1,2 · S ≡

∑
x,y

(G1,2 ◦ S),419

(x0,y0) is the response central location in the visual field, σ1, σ2 are420

the sizes of activation and normalization pRFs, a, c their amplitudes,421

b, d the activation and normalization constants. The neural predic-422

tion of theDNmodel pDN (t) is then convolvedwith a hemodynamic423

response function to obtain a prediction of the BOLD fMRI signal at424

eachcortical location. Identically to 15,21, thefittingprocedure starts425

byfitting aGaussianpRFmodel, with a grid-search stage followedby426

an iterative stage, to obtain initial estimates of pRF size andposition.427

These estimates areusedas startingparameters for theDNmodel fit,428

which also comprises of a grid-search and iterative fit stages. First, a429

grid-search isperformedvertex-wise for theadditionalDNmodelpa- 430

rameters, while keeping the pRF size and position fixed to the Gaus- 431

sianestimates; next, an iterativefitover all theDNmodelparameters 432

is performed. Both grid-search and iterative fit stages of both mod- 433

els include a one-parameter hemodynamic response function, com- 434

putedasa linearcombinationof thestandardSPM-softwareHRFand 435

of its derivative; the fit parameter represents the coefficient of the 436

HRFderivative. 437

Visual regionsof interest andclusters 438

Visual ROIs and clusters were defined for each participant on the 439

basis of individual polar angle and eccentricity maps of cortical re- 440

sponses, following 16,52, and similarly to 15. 441

Population receptivefieldparameters estimates 442

Parameter estimates for eachROIwere obtained as theR2-weighted 443

meanofparameterestimatesateachcortical locationwithin theROI. 444

Topreventedgeartifactsor low-signal timecourses fromaffectinges- 445

timates, cortical locations with model R2 < 0.3 or eccentricity out- 446

side the bounds of the stimulus rangewere excluded. 447

RepresentativeROI timecourses 448

Representative ROI timecourses were obtained as the R2-weighted 449

meanof timecoursesateachcortical locationwithintheROI, split for 450

each bar-pass, temporally aligned with respect to the pRF position 451

(x0,y0) and accounting for HRF delay. To prevent edge artifacts or 452

low-signal timecourses from affecting estimates, cortical locations 453

with model R2 < 0.5, difference between DN and Gaussian R2 < 454

0.1, or eccentricityoutside theboundsof the stimulus rangewereex- 455

cluded. 456
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