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Abstract 27 

In both risky choice and perception, people overweight small and underweight large probabilities. 28 

While prospect theory models this with a probability weighting function, and Bayesian noisy 29 

coding models attribute it to specific encoding functions or priors, we propose a more general 30 

account: Probability distortions arise from cognitive noise being repelled by the natural boundaries 31 

of probability (0,1). This boundary repulsion occurs in any encoding-decoding system that 32 

efficiently encodes, or Bayesian-decodes, bounded quantities, independent of specific priors or 33 

encoding functions. Our theory predicts: new, experimentally-induced boundaries should cause 34 

additional distortions; increasing cognitive noise should amplify distortions; and boundaries 35 

should reduce behavioral variability near them. We confirmed all predictions in three pre-36 

registered experiments spanning risky choice and probability perception. Our findings further 37 

suggest that these changes originate largely during decoding. Our work provides a unified 38 

explanation for distorted and variable probability judgments, reframing them as consequences of 39 

bounded, noisy cognitive inference. 40 

Significance 41 

The origin of probability weighting—a central feature of decision-making under risk—remains a 42 

longstanding puzzle. Does it arise from processes unique to risk, or does it reflect a more general 43 

cognitive mechanism? Here, we show that the classic probability weighting pattern is not domain-44 

specific but instead emerges from a general property of noisy inference over bounded quantities, 45 

such as probabilities. Our account formalizes how resource-rational encoding and Bayesian 46 

optimal decoding naturally lead to interactions between cognitive noise and the 0–1 bounds of 47 

probability, giving rise to systematic distortions. Using pre-registered experimental manipulations 48 

across both risky lottery valuation and probability perception, we demonstrate that distortions in 49 

probability weighting and estimation are not fixed, intrinsic features, but rather predictable 50 

consequences of the interaction between noise and boundaries. This provides a mechanistic 51 

account of probability weighting and suggests a unifying explanation for its emergence across 52 

different cognitive domains. Similar mechanisms should extend to other naturally or contextually 53 

bounded quantities. 54 
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Main 55 

Uncertainty permeates all aspects of our behavior, from everyday decisions to high-stake financial 56 

and policy decisions. Human decisions under uncertainty often deviate from normative theoretical 57 

models1 such as Expected Utility Theory (EUT)2,3, which assume that people weigh risky 58 

outcomes by their objective probabilities. In reality, people behave as if they distort these 59 

probabilities by overweighting small chances and underweighting large ones, a pattern famously 60 

described by Prospect Theory’s probability weighting function4,5. Yet, while Prospect Theory 61 

provides a useful descriptive account, it leaves open the key questions of why probability 62 

weighting arises in the first place, and how its underlying cognitive mechanisms may lead to 63 

variations in its strength across different choice contexts. Moreover, while Prospect Theory 64 

captures average risk attitudes, it offers no account of the systematic variability observed in 65 

human decision-making6,7.  66 

 67 

For these reasons, more recent theories of risky choice have started to incorporate perspectives 68 

from models describing how variability in behavior may arise from neural noise inherent in 69 

cognition8. Inspired by frameworks from neuroscience that model perception as noisy inference9, 70 

recent models have attempted to explain both probability weighting and behavioral variability as 71 

consequences of internal noise in the brain’s process of inferring percepts from sensory 72 

information. However, these models often rely on strong and sometimes conflicting assumptions. 73 

Some posit that probability weighting arises because probabilities in the environment come from 74 

a U-shaped prior distribution with greater density at extremes than intermediate probabilities10 75 

and that the brain efficiently encodes probabilities under this prior11–13. Others assume the 76 

opposite: an inverse-U-shaped prior14 for Bayesian decoding15,16. These assumptions not only 77 

contradict each other but often do not faithfully reflect the priors that would be consistent with the 78 

actual probabilities used in the specific experimental context, rendering such inference 79 

suboptimal. Yet other models appeal to fixed encoding transformations, such as representing 80 

probabilities in log-odds space17–19. In these models, the probability weighting function emerges 81 

from fixed structural assumptions about how information is transformed during inference. This use 82 

of hard-coded priors or non-linear encoding functions has led to the criticism that corresponding 83 

Bayesian inference models may have too many degrees of freedom, so that they may in principle 84 

capture any type of behavior via highly specific assumptions, without identifying a general 85 

underlying mechanism20–22. 86 

 87 
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Here we propose a more general and parsimonious account of the cognitive mechanisms that 88 

give rise to probability weighting, which does not have to resort to specific priors or encoding 89 

functions. Our account rests on a fundamental property of probabilities: they are naturally 90 

bounded between 0 and 1. This property, when taken into account either by an efficient encoder 91 

or a Bayesian decoder during the noisy cognitive inference process, inevitably leads to truncation 92 

of the Bayesian posterior near the boundaries, which systematically repels noisy estimates away 93 

from the extremes—a phenomenon we call cognitive boundary repulsion. We show that this effect 94 

arises robustly across a wide range of prior shapes and encoding functions, and that it can 95 

originate independently from both efficient encoding and Bayesian decoding, as long as the 96 

quantity that is being inferred is bounded. The general view that probability distortions may relate 97 

to truncation is consistent with existing perspectives in economics and perception science. In 98 

economics, some studies have fit empirically observed probability weighting by assuming that 99 

people calculate expected utilities with random errors truncated for the highest and lowest lottery 100 

outcomes23. However, our account differs from this in specifying exactly where and why the 101 

truncation occurs, as well as in what distortions it predicts. That is, while earlier studies illustrated 102 

the descriptive utility of assuming truncation for capturing behavior, our account explains its 103 

emergence as a property of the noisy cognitive mechanisms used to infer any bounded quantities. 104 

Moreover, our account makes novel, counterintuitive experimental predictions that we test 105 

empirically. In perception, Bayesian decoding models have explained related perceptual biases 106 

with bounded (often uniform) priors that are consistent with experimentally imposed stimulus 107 

ranges24–26, showing that uniform bounded priors can generate systematic distortions even for 108 

contextually bounded stimuli (not naturally bounded like probabilities). Our account goes further 109 

in demonstrating that these effects can arise not only during decoding but also at encoding, across 110 

diverse bounded prior distributions and encoding functions. While specific priors or encoding 111 

functions may influence features such as the crossover point—where overweighting shifts to 112 

underweighting—they are not required for the core pattern to emerge, offering a general 113 

explanation for the ubiquity of probability distortions. 114 

 115 

In our account of cognitive boundary repulsions, distortions can occur both at the efficient 116 

encoding and Bayesian decoding stages. However, these two potential sources of distortion 117 

would lead to different behavioral signatures that can be empirically disentangled.	At the encoding 118 

stage, we show that boundary repulsions arise in the likelihood when the brain efficiently adapts 119 

its limited resources to maximize mutual information between bounded quantities and their 120 

biophysically constrained, bounded representations12,27–29. Such efficient encoding adaptation30,31 121 
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causes range dependence of neural representations and behavior, as widely observed across 122 

sensory domains32–34, perceptual choice35, and value-based decision-making36–38, and formalized 123 

in process-level theories such as Range–Frequency Theory39 and Decision-by-Sampling40, both 124 

of which have efficient-coding interpretations41. Here, we show that if there is adaptive efficient 125 

coding for bounded quantities, it necessarily produces boundary repulsions in cognitive noise that 126 

scale with the input range. As the range of inputs increases, the same boundary repulsion within 127 

the representational space maps onto a larger bounded quantity space—producing stronger 128 

distortions and greater variability in behavior. However, when boundary repulsions arise only at 129 

the time of decoding, the encoded representations remain fixed and do not rescale with changes 130 

in the bounded range. Still, Bayesian decoding with a bounded prior will truncate the posterior 131 

distribution, but without rescaling. As a result, the distortions and behavioral variability remain 132 

invariant to the size of the input range. Thus, while both encoding and decoding can independently 133 

produce boundary repulsion effects, they generate distinct patterns: boundary repulsion arising 134 

during encoding scales with the size of the range, whereas boundary repulsion arising during 135 

decoding does not. 136 

 137 

Most accounts of probability weighting are inherently context-independent. They assume that 138 

distortions reflect something intrinsically special about small and large probabilities4,5,42, the 139 

highest and lowest outcomes of lotteries23, or an outcome sampling mechanism for inferring 140 

probabilities43,44. Some context-dependent theories rely on long term statistics, such as assuming 141 

that small and large probabilities occur more often in the environment10,40. Bayesian models can 142 

flexibly account for context-dependent distortions by varying assumed prior shapes, but most 143 

existing accounts attribute reduced variability near the extremes to fixed transformations like log-144 

odds encoding17,19, which do not predict changes in variance near the boundaries across contexts. 145 

By contrast, our account explains probability weighting as a natural consequence of noisy 146 

inference over bounded quantities. This mechanism uniquely predicts a joint behavioral signature 147 

that is not predicted by the other existing theories: when new boundaries are introduced, new 148 

distortions should arise, and response variability should decrease near those boundaries. These 149 

effects should appear in both simple perceptual judgments and higher-order lottery valuations. 150 

We tested these predictions in three pre-registered experiments across perceptual and value-151 

based tasks, in which we manipulated cognitive noise levels and introduced explicit contextual 152 

boundaries, via instructions informing participants of the range of probabilities they could 153 

encounter. Consistent with our predictions, we found that (1) higher cognitive noise amplified 154 

probability distortions, (2) newly introduced boundaries induced additional probability distortions, 155 
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and (3) variance in estimates systematically decreased near both natural and contextually 156 

induced boundaries. Moreover, both distortion and variability remained largely range-157 

independent—consistent with the idea that the boundary repulsion arises from the Bayesian 158 

decoding stage, rather than at the encoding stage. Our account thereby grounds the origins of 159 

probability weighting in noisy inference of bounded quantities and reveals principles likely to 160 

generalize across other domains of cognition involving bounded quantities. 161 

Results 162 

Boundary repulsions in noisy inference of bounded quantities 163 

Many cognitive tasks, ranging from perceptual estimation to valuation and decision making, 164 

involve stimuli that lie within a bounded range. One example is probabilities that naturally lie 165 

between 0 and 1. Critically, such tasks require decision-makers to represent variables within a 166 

noisy neural system, which inevitably introduces variability and systematic bias into these 167 

representations45. We model this phenomenon using the well-established general framework of 168 

noisy encoding followed by decoding9,13, in which a stimulus b is encoded into a noisy internal 169 

representation η via the encoding function F(b) plus corrupting noise ϵ, and subsequently decoded 170 

to generate an inferred estimate 𝑏" (Fig. 1a). This estimate is either reported directly in perceptual 171 

judgment tasks or is used as input to subsequent valuation/value comparison in risky decision-172 

making tasks. When applied to any bounded quantity, irrespective of its assumed distribution as 173 

captured by a wide variety of prior shapes, this process ultimately leads to a truncated posterior 174 

that is skewed away from the boundaries whenever inference involves either efficient coding or 175 

Bayesian decoding or both (Fig. 1a; see Methods). We call this emergent inward asymmetry of 176 

the posterior distribution cognitive boundary repulsions (Fig.1f). These repulsions lead to the 177 

characteristic probability weighting function (Fig. 1g), where small probabilities are overweighted 178 

and large probabilities are underweighted due to overestimation of the mean posterior estimate 179 

above the lower boundary and underestimation below the upper boundary (Fig.1h). Additionally, 180 

the repulsions predict reduced variability of the estimate near boundaries (Fig.1i).  181 

 182 

First, we formally derive (in Methods) that, given the framework of noisy encoding and decoding, 183 

and under some weak assumptions of optimality, cognitive boundary repulsions have to occur for 184 

at least two reasons (see Methods): (1) when encoding is efficient in the sense that it maximizes 185 
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mutual information13,46 between the bounded inputs and a bounded representational space, 186 

likelihood (noise) distributions will be skewed inwards, and (2) when Bayesian decoding is 187 

performed with any (objective) bounded prior, mean posteriors will be biased inwards as well, 188 

irrespective of the shape of this prior. In other words, at the encoding stage, if internal 189 

representations are limited η ∈	[0, C] then this inevitably leads to truncated likelihoods (Fig.1b) as 190 

there is a finite support for encoding. Our derivation shows that if these bounded representations 191 

efficiently optimize to maximize mutual information about the bounded quantity b ∈	[𝑏_1, 𝑏_2], then 192 

the encoding function must span the dynamic range of available resources in a way that leads to 193 

inward skew in encoding noise and likelihood, pushed away from the boundaries (Fig.1c). In 194 

contrast, at the decoding stage, even if encoding is unbounded or non-adaptive (Fig.1d), 195 

boundary repulsions arise purely from applying Bayes' rule with a bounded prior. The prior 196 

truncates the posterior at the boundaries, causing systematic inward skew of the mean posteriors 197 

—even when the likelihood is symmetric and not truncated (Fig.1e). We validated both encoding- 198 

and decoding-based repulsions in simulations across diverse priors and encoding functions (see 199 

Supplementary Figs. 1-3). For numerical simulations we implemented the cumulative distribution 200 

function (CDF) transform of the prior, a redundancy-reducing code for efficient coding12 (see 201 

Methods and Supplementary for details). In line with our account and its predictions, encoding-202 

based effects simulated across different prior shapes reproduced the characteristic probability 203 

weighting pattern (Supplementary Fig. 1). Similarly, the characteristic probability weighting 204 

pattern also emerged also for decoding-based effects under various prior shapes and encoding 205 

functions (see Supplementary Figs. 2 and 3). Together, our theoretical derivations and numerical 206 

simulation results show that characteristic probability weighting patterns can arise solely due to 207 

cognitive boundary repulsions, as consequence of noisy inference over bounded quantities, at 208 

both the encoding and decoding stage. 209 

 210 

Although cognitive boundary repulsions can occur both at encoding and decoding stage, we also 211 

show that they produce dissociable behavioral signatures (see Methods). Encoding-based 212 

repulsions scale with the range of the bounded inputs. As the stimulus range widens, a fixed-213 

capacity representational space must be stretched to cover a larger input interval. As a result, the 214 

same internal noise maps onto a broader range of inputs, amplifying both distortions and 215 

variability in the inferred estimates. Even partial adaptation, where encoding only adjusts partially 216 

to the input range produces range adaptation of cognitive boundary repulsions. This result 217 

extends the general range adaptation of neural representations and behavior observed for 218 

efficient adaptation in various contexts30–39,47.  In contrast, when boundary repulsions arise solely 219 
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during the decoding stage, i.e., when encoding is completely non-adaptive, the representational 220 

space remains unchanged. As a result, the magnitude of boundary repulsions of estimates 221 

remains invariant to input range, because internal noise continues to map to the same inputs. We 222 

also demonstrate this theoretical dissociation in simulations (Fig.7, left column), using the CDF 223 

approximation of efficient encoding and a uniform prior, where the ultimate percept is defined as 224 

the mean posterior. 225 

To test the predictions of our cognitive boundary repulsions account, we designed a series of 226 

experiments that independently manipulated its two key variables: the amount of cognitive noise 227 

and the presence of contextual boundaries. Across tasks involving risky decision-making and 228 

purely perceptual probability estimation, we varied the complexity of fractions that represented 229 

probabilities (to modulate noise) and explicitly instructed participants about the range of 230 

probabilities they would encounter in each block (to introduce contextual boundaries). Crucially, 231 

we also distinguished these cognitive effects from a separate class of boundary effects: 232 

Mechanical response truncation in errors. In many tasks, responses are constrained by fixed 233 

bounds (e.g., sliders or number ranges), such that errors in estimates exceeding the limits are 234 

forcibly clipped. When participant-level biases differ, such mechanical truncation can produce 235 

apparent group-level truncation in errors48 that may look like cognitive boundary repulsions. To 236 

isolate cognitive boundary repulsions from potential non-cognitive, response-scale artifacts, we 237 

designed our boundary manipulations so that they did not alter the response scale itself. 238 

Therefore, contextual boundary manipulations in our experiment were executed without altering 239 

the output scale for lottery valuations and probability estimate responses, thereby eliminating the 240 

possibility of non-cognitive, bounded output range effects. 241 
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 242 

Fig. 1 | Cognitive boundary repulsions in noisy inference of bounded quantities. a) Bounded 243 
quantities (e.g., probabilities between 0 and 1) are encoded into noisy internal representations η and then 244 
decoded to form an estimate (𝑏"). This inference process can be influenced by the bounded nature of the 245 
stimulus either at the encoding stage via efficient allocation of limited representational resources, or at 246 
the decoding stage, via Bayesian decoding with a bounded prior. Bottom: Similar general effects arise 247 
across diverse prior shapes (uniform, U-shaped, inverse-U-shaped), emphasizing that boundary repulsions 248 
are not dependent on specific prior shapes. (b)–(f) Schematic illustrations of the mechanisms captured, 249 
and predictions derived from, our account. (b) When encoding is limited to a finite representational capacity 250 
η ∈ [0, C], encoding noise becomes truncated near representational bounds. (c) If encoding further 251 
optimizes mutual information between the input and representations, the allocation of bounded 252 
representational capacity across the bounded input range induces inward asymmetry in the likelihood 253 
function p(η∣b), even before decoding. (d) Even with symmetric likelihoods (e.g. from unconstrained or non-254 
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adaptive encoding), applying bounded priors affect the posterior through Bayes' rule. (e) This leads to 255 
systematic inward skew in the posterior near boundaries, even when encoding stage did not induce 256 
asymmetries in the likelihood. (f) Both efficient encoding and Bayesian decoding mechanisms 257 
independently produce truncated, inward-skewed posteriors that repel inferred estimates away from 258 
boundaries of inputs (e.g., 0 and 1 for probabilities), giving rise to cognitive boundary repulsions. (g) 259 
Posterior means are biased away from boundaries, producing the characteristic shape of probability 260 
weighting (overweighting of small probabilities and underweighting large ones). (h) The magnitude of 261 
distortion increases with noise. (i) Variance of estimates is reduced near boundaries, another signature of 262 
cognitive boundary repulsions. 263 

Testing core predictions of the cognitive boundary repulsion 264 

account 265 

Our account proposes that probability weighting arises not from fixed encoding transformations 266 

or prior shapes, but from a general computational principle: when bounded quantities are inferred 267 

under noise, they give rise to systematic repulsions of the posterior away from the boundaries. 268 

These cognitive boundary repulsions, emerging naturally at boundaries of 0 and 1 for 269 

probabilities, produce biases in estimated probabilities that propagate and produce the 270 

characteristic probability weighting observed in risky valuation tasks as described in Prospect 271 

Theory. However, they are accompanied by additional, diagnostic signatures in variability that 272 

reflect the underlying boundary repulsions in noise due to noisy inference of bounded quantities. 273 

 274 

Our cognitive boundary repulsion account makes concrete, testable predictions. First, increasing 275 

noise should make probability weighting more extreme. Second, introducing novel boundaries 276 

into a stimulus space should produce repulsive biases like those induced by natural boundaries. 277 

Third, adding these boundaries should result in diminished variance patterns near the new 278 

boundaries. Finally, this mechanism and its predictions should be domain-general: it should apply 279 

across tasks that require probabilistic inference, whether probabilities are estimated directly for 280 

perceptual report or used indirectly for valuation or value-based choice. 281 

To test these predictions empirically, we conducted three pre-registered experiments 282 

(https://osf.io/8sykp, https://osf.io/cfgbr, https://osf.io/vzdsq) across two distinct cognitive 283 

domains. Experiments 1 and 2 were risky lottery valuation tasks (Fig. 2a) in which participants 284 

reported certainty equivalents (CEs), indicating the minimum sure payoff they would accept to 285 

give up the opportunity to take part in risky lotteries paying 50 ECU (Experimental Currency Units) 286 
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at varying probabilities. Experiment 3 was a perceptual judgment task (Fig. 2d) in which 287 

participants had to estimate probabilities corresponding to fractions of different complexity. In all 288 

experiments, we manipulated two key components of the inference process within-subject: 289 

cognitive noise, by altering the complexity of fraction formats used to present probabilities (e.g., 290 

simple fractions like 35/100 vs. complex ones like 2334/8049) (Fig. 2c,f); and contextual 291 

boundaries, introduced via block-wise explicit instructions about the probability range participants 292 

would encounter (e.g., [0–0.5], [0.5–1], or [0.34–0.66]) (Fig. 2b, e). Probabilities were sampled 293 

uniformly within each range, and participants were explicitly informed of the probability range and 294 

the uniform sampling before each block, creating contextual boundaries. Because our boundary 295 

manipulations depended on participants’ understanding of these induced ranges, comprehension 296 

questions were asked at the start of every block to ensure participants correctly knew the range 297 

of probabilities they were about to judge or decide on in the upcoming block. 298 

This experimental setup enabled us to evaluate core predictions of the cognitive boundary 299 

repulsion account; each directly derived from the model’s core claim: noisy inference of bounded 300 

quantities leads to repulsive biases and reductions in variance near the boundaries. 301 

 302 
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 303 
Fig. 2 | Experiment design: (a) Risky Lottery Valuation Task (Experiments 1 & 2): On each trial, 304 
participants valued risky lotteries, reporting their certainty equivalent (CE) for a lottery that paid 50 ECU 305 
with some probability and 0 otherwise. The entered CE turned green once the participants had confirmed 306 
their entry. (b) Boundary Manipulations in the Risk Task: Before each block, participants were explicitly 307 
informed of the probability range they would encounter, inducing contextual probability boundaries. 308 
Experiment 1 introduced a single boundary at 0.5, while Experiment 2 added two boundaries at 0.34 and 309 
0.66. Probabilities in each block were sampled uniformly and never exceeded the stated range. (c) 310 
Cognitive Noise Manipulation in the Risk Task: All probabilities were presented as fractions, with 311 
difficulty manipulated across blocks. Low-noise blocks used simple fractions with a fixed denominator of 312 
100, while high-noise blocks used complex four-digit fractions to increase difficulty in inferring them. (d) 313 
Perceptual Judgment Task (Experiment 3): Participants viewed probabilities as fractions on each trial 314 
and estimated the corresponding percentage as accurately as possible. (e) Boundary Manipulations in 315 
the Perceptual Task: Trials were grouped into blocks based on four explicitly stated probability ranges: 0-316 
1, 0-0.33, 0.33-0.65, and 0.67-1, introducing varying contextual boundaries. (f) Cognitive Noise 317 
Manipulation in the Perceptual Task: Noise was manipulated via fraction complexity. In low/no noise 318 
blocks, participants only had to enter the numerator (fixed denominator of 100); in high noise blocks, both 319 
numerator and denominator were four-digit values requiring full fraction evaluation, thus increasing 320 
cognitive difficulty. 321 
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Amplifying probability distortions by increasing cognitive noise 322 

The first prediction of our account is that increasing cognitive noise should amplify repulsions at 323 

the natural bounds of probability (0 and 1), thereby strengthening both the overweighting of small 324 

probabilities and underweighting of large probabilities. This follows directly from the account’s 325 

central assumptions that boundaries repel away noise, so that higher noise should lead to a 326 

strengthening of this repulsion at both upper and lower boundaries. To make our predictions more 327 

concrete, we ran simulations of our experiment using the noisy inference model with bounded 328 

priors during decoding. The results of these simulations and their predictions are plotted next to 329 

empirical data (Fig. 3a, e). In the simulations, decision-makers use linear encoding of 330 

probabilities, followed by Bayesian decoding with a uniform bounded prior reflecting each 331 

experiment’s probability range, and two levels of internal noise (σ = 0.02 and σ = 0.06). To 332 

manipulate the noise experimentally, we manipulated fraction complexity as a proxy for cognitive 333 

noise. As predicted, participants’ lottery valuations (Experiments 1 & 2; Fig. 3b, c, f, g) and 334 

probability estimates (Experiment 3; Fig. 3d, h) showed significantly stronger distortions near the 335 

natural boundaries under high cognitive noise. All effects were assessed using a pre-registered 336 

mixed-effects model (see Methods) analyzing the within-subject effects of noise (fraction 337 

complexity) on the reported certainty equivalent/probability, in preregistered probability bins near 338 

the natural boundaries (grey shaded regions in Fig. 3). In all three experiments, we observed the 339 

expected within-subject amplification of overweighting/overestimation for small probabilities (all 340 

betas > 0, all p < 0.001, see Supplementary Tables 1.1.1 – 1.1.3), and 341 

underweighting/underestimation of large probabilities (all betas < 0, all p < 0.001, see 342 

Supplementary Tables 1.2.1 – 1.2.3).  This confirms that probability distortions indeed increase 343 

with higher cognitive noise, an effect that is not predicted by existing models of probability 344 

weighting such as Prospect Theory that assume a fixed functional form4,5,42 and do not incorporate 345 

noise-dependent mechanisms. On the other hand, existing accounts relying on noise14,17,19,47 or 346 

error based mechanisms23,43,44,49 can explain these results. 347 
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 348 

Fig. 3 | Effect of cognitive noise on probability distortions in risk and perception: (a, e) Model 349 
predictions of noise-dependent distortions. Simulations from the cognitive boundary repulsion model 350 
with linear encoding and a uniform bounded prior (see Methods). Certainty equivalents (CEs) were 351 
computed by multiplying the mean of noisy probability estimates with the lottery value (50 ECU). (a) 352 
Predicted CEs under low (σ = 0.02; dashed line) and high (σ = 0.06; solid line) noise parameters. Higher 353 
noise amplifies boundary repulsions, leading to stronger deviations from the expected value line (green). 354 
(e) Predicted difference in CEs between high and low noise conditions as a function of underlying 355 
probability. (b, f) Empirical results from Experiment 1 (risky lottery valuation task). (b) Average CEs 356 
across probabilities for simple and complex probabilities. (f) Difference in lottery valuation between complex 357 
and simple probability conditions. As predicted, high noise (complexity) produces stronger probability 358 
weighting. Black lines indicate mean valuations/valuation differences; grey bands around the mean indicate 359 
±1 s.e.m. (standard errors of the mean); red asterisks denote significant effects (p < 0.001) in pre-registered 360 
bins (grey shading on left and right). (c, g) Replication in Experiment 2. Data confirm the same noise 361 
dependent distortion patterns in an independent sample. (d, h) Generalization to perceptual experiment 362 
(Experiment 3). Participants estimated numeric probabilities from fraction inputs. Results show systematic 363 
overestimation of small probabilities and underestimation of large probabilities under high noise. These 364 
perceptual distortions mirror the valuation distortions predicted by the model, supporting the domain-365 
generality of the cognitive boundary repulsion account. 366 

Inducing new boundaries creates new probability distortion patterns 367 

A central prediction of the cognitive boundary repulsion account is that repulsions are not 368 

exclusive to natural bounds (0 and 1) but arise for any bounded quantity. Therefore, 369 

experimentally induced boundaries should induce novel distortions that resemble those found at 370 

natural boundaries. Additionally, these new distortions should become stronger under increased 371 
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cognitive noise. Crucially, this prediction fundamentally departs from existing accounts, as they 372 

attribute the classical distortion patterns to something inherently special in the way small and large 373 

probabilities are weighed, encoded, or decoded. In our account, small and large probabilities 374 

appear special only because of the natural boundedness of probabilities. By altering these 375 

boundaries, other probabilities should acquire this special status as well, systematically altering 376 

the characteristic distortion pattern. 377 

We tested this prediction by manipulating contextual probability boundaries across three pre-378 

registered experiments. In Experiment 1 (lottery valuation), we introduced a single additional 379 

boundary at 0.5. In Experiments 2 (lottery valuation) and 3 (probability estimation), we introduced 380 

two new boundaries at 0.34 and 0.66 to replicate the effects of experiment 1 with additional 381 

boundaries and across tasks. In all cases, participants completed blocks in which probabilities 382 

were drawn uniformly either from the full range (0,1) or from restricted subranges defined by new 383 

boundaries. Since all probabilities and response formats were held constant, any observed 384 

changes must result from altered probability inference due to newly imposed boundaries, 385 

providing a strong test of our account.  386 

We conducted two pre-registered analyses using the same mixed-effects model that was applied 387 

to test our first hypothesis (see Fig. 3 and Methods). Again, all analyses were done on pre-388 

registered probability bins (grey bins in Figs. 4 and 5). First, we tested an interaction effect (Fig. 389 

4) to assess whether introducing contextual boundaries, combined with increased probability 390 

complexity (cognitive noise), induced new distortions. Second, we tested a main effect (Fig. 5) 391 

examining whether boundaries alone, under high noise, reshape estimation and valuation for 392 

identical probabilities/lotteries within-subjects. The simulations plotted next to empirical data in 393 

Figs. 4 and 5 used the same model parameters as in Fig. 3: linear encoding and Bayesian 394 

decoding with a uniform bounded prior reflecting each experiment’s probability range, and two 395 

levels of internal noise (σ = 0.02 and σ = 0.06). For Experiment 1, the interaction effect was 396 

visualized by simulating predicted valuations for the full-range, low-noise condition and for the 397 

half-range, high-noise conditions (Fig. 4a), and plotting their difference to capture the predicted 398 

interaction effect (Fig. 4c). For Experiments 2 and 3, which included two boundaries, the 399 

interaction effect is visualized by plotting simulated differences between full-range low noise and 400 

restricted-range high-noise conditions of valuation and estimation respectively (Fig. 4e, g). The 401 

resulting plots predict valuation/estimation dips below and jumps above each added boundary, 402 

due to the interaction of cognitive noise and boundaries. For the main effect, we simulated high-403 

noise conditions with and without contextual boundaries (Fig. 5), holding noise constant to isolate 404 
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the influence of boundaries alone. The resulting difference plots (Fig. 5c, e, g) show how boundary 405 

structure alone alters valuation and estimation. 406 

In Experiment 1, adding a single contextual boundary at 0.5 during risky lottery valuation 407 

significantly altered the classic probability weighting pattern. As predicted, we observed both 408 

an interaction effect (Fig. 4b, d) and a main effect (Fig. 5b, d), showing that the addition of the 409 

new artificial boundary, together with cognitive noise, was sufficient to distort valuations for 410 

identical lotteries. Specifically, the classic probability weighting pattern was transformed into the 411 

predicted double-distorted weighting pattern, with the expected significant increase in valuations 412 

above the contextually induced boundary of 0.5 (interaction: beta > 0, p < 0.001; see 413 

Supplementary Table 2.1.1; main effect: beta > 0, p < 0.001; see Supplementary Table 3.1.1) and 414 

the significant decrease in valuations below the contextually induced boundary (interaction: beta 415 

< 0, p < 0.001; see Supplementary Table 2.2.1; main effect: beta < 0, p < 0.001; see 416 

Supplementary Table 3.2.1). In Experiment 2, we replicated this boundary-induced distortion 417 

using two additional boundaries (at 0.34 and 0.66), again confirmed through both the interaction 418 

(Fig. 4f) and main effects (Fig. 5f). This showed that the phenomenon generalizes beyond a single 419 

boundary, and can produce even a triple-distorted weighting pattern when two additional 420 

contextual boundaries are induced. The interaction effect confirmed the expected increased 421 

valuations above both induced boundaries, although it reached significance only in one of the two 422 

bins (both betas > 0; p < 0.05 for 1 bin; see supplementary tables 2.1.2 and 2.1.3). The main effect 423 

confirmed significantly increased valuations in both pre-registered bins (both betas > 0, with 424 

significance in one bin reaching p < 0.05, and the other p < 0.001; see supplementary tables 3.1.2 425 

and 3.1.3), and both the interaction effect and the main effect confirmed significantly decreased 426 

valuations in both pre-registered bins (all betas < 0, all p < 0.001; see supplementary tables 2.2.2, 427 

2.2.3, 3.2.2, 3.2.3). Finally, in Experiment 3, we replicated these effects in the domain 428 

of perceptual probability estimation, showing that the same boundary and noise manipulations 429 

produced equivalent distortions for purely perceptual judgments outside the domain of risky 430 

decision-making (Fig. 4h, Fig. 5h). Also in this task, both the interaction and the main effects 431 

confirmed a significant increase in estimated probabilities in both pre-registered bins (all betas > 432 

0, all p < 0.001; see Supplementary Tables 2.1.4, 2.1.5, 3.1.4, 3.1.5) and a significant decrease 433 

in estimated probabilities in both pre-registered bins (all betas < 0, all p < 0.001; see 434 

Supplementary Tables 2.2.4, 2.2.5, 3.2.4, 3.2.5). Together, these results demonstrate that 435 

probability weighting is not fixed but is systematically and flexibly shaped by the structure of 436 
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contextual boundaries and cognitive noise, supporting the boundary repulsion account across 437 

both valuation and perceptual tasks.  438 

These results confirm that multiple contextual boundaries produce multiple boundary repulsions 439 

within-subjects, for both risky decision making and perception. Context independent models like 440 

Prospect Theory4,5, stochastic expected utility theory23 or noisy outcome sampling models43,44 441 

cannot account for the flexible induction of new weighting patterns. Context-dependent models 442 

that rely on long term assumptions for statistical distributions over probabilities10,40 also cannot 443 

account for sudden changes in distortions with simple instructions of bounded ranges to 444 

participants, as in our experiments. Existing Bayesian models14,17,19 and approximate Bayesian 445 

sampling models49 can account for these patterns in two possible ways. One is by assuming that 446 

while participants usually use priors with peaks centered at 0.5 (creating the characteristic 447 

probability weighting pattern), they can flexibly and immediately adopt priors with peaks centered 448 

in the relevant ranges we induce in our experiment. Existing Bayesian accounts14,17,19 use this 449 

assumption often in combination with log-odds encoding to account for probability weighting. The 450 

alternative, which we propose, is that bounded priors naturally reflect the limits of probabilities (0–451 

1) and adapt to newly imposed experimental ranges, thereby explaining both the classical 452 

weighting pattern and its systematic changes largely independent of specific encoding functions 453 

or prior shapes (see Methods, Supplementary Figs. 2–3). Moreover, the same qualitative features 454 

also emerge under bounded priors constraining efficient coding (see Methods, Supplementary 455 

Fig. 1). Thus, our cognitive boundary repulsion account provides a parsimonious mechanistic 456 

origin for probability distortions and their systematic modulation by newly induced boundaries. 457 
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Fig. 4 | Interaction effect of induced boundaries and cognitive noise: (a, c, e, g) Model predictions 459 
from the cognitive boundary repulsion account, assuming linear encoding and Bayesian decoding with a 460 
uniform prior bounded within the experimental block ranges (see Methods). Simulations illustrate predicted 461 
distortions when comparing high-noise (σ = 0.06) and low-noise (σ = 0.02) conditions across different 462 
contextual boundaries. (a) Predicted certainty equivalents (CEs) in a lottery task with full-range probabilities 463 
(black dotted line) versus restricted-range probabilities with an added boundary at 0.5 (red/blue lines), 464 
showing the emergence of a double weighting pattern under high noise. (c, e, g) Simulated interaction 465 
effects—computed as the difference in predicted valuations or estimations between high-noise restricted-466 
range and low-noise full-range conditions—demonstrate how boundary repulsions emerge symmetrically 467 
around induced boundaries at 0.5 (c) and at 0.34 and 0.66 (e, g). (b, d, f, h) Empirical results validating 468 
these predictions across three experiments. (b) In Experiment 1 (lottery valuation), participants show 469 
distorted valuations consistent with a double weighting pattern when a boundary at 0.5 is introduced under 470 
high noise. (d) The corresponding interaction effect is visualized as valuation differences between 471 
conditions, with increases above and decreases below the induced boundary. (f) In Experiment 2 (lottery 472 
valuation), introducing two boundaries at 0.34 and 0.66 under high noise produces a triple weighting 473 
pattern, with valuations increasing above and decreasing below each boundary. (h) In Experiment 3 474 
(perceptual probability estimation), the same manipulation leads to equivalent distortions in subjective 475 
probability estimates, demonstrating that boundary repulsion generalizes beyond valuation to perceptual 476 
inference. Grey shaded areas mark pre-registered probability bins used for statistical testing. Black lines 477 
show means; grey bands indicate ±1 standard error of the mean (s.e.m.); single and triple red asterisks 478 
denote significant effects (p < 0.05 and p < 0.001, respectively) within pre-registered bins. 479 

 480 

 481 
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 483 
Fig. 5 | Main effect of induced boundaries on probability distortions for high cognitive noise: (a, c, 484 
e, g) Model predictions from the cognitive boundary repulsion account under high internal noise 485 
(σ = 0.06), comparing restricted-range blocks with added boundaries to full-range blocks without 486 
boundaries. Simulations assume linear encoding and Bayesian decoding with a uniform prior 487 
bounded by the experimental block ranges (see Methods). (a) Predicted certainty equivalents 488 
(CEs) in a lottery task show a single weighting function in the full-range condition (black), but a 489 
double weighting pattern when a boundary is introduced at 0.5 (red/blue), consistent with 490 
boundary repulsion. (c, e, g) Simulated main effects—computed as the difference in predicted 491 
valuations or estimations between restricted-range and full-range conditions—demonstrate how 492 
boundary-induced distortions emerge around contextual boundaries at 0.5 (c) and at 0.34 and 493 
0.66 (e, g), even when noise is held constant. (b, d, f, h) Empirical results confirm these 494 
predictions across three experiments. (b) In Experiment 1 (lottery valuation), introducing a 495 
boundary at 0.5 under high noise produces a double distortion pattern in valuations. (d) This main 496 
effect is visualized as systematic shifts in valuations above and below the induced boundary. (f) In 497 
Experiment 2 (lottery valuation), adding boundaries at 0.34 and 0.66 produces a triple weighting 498 
pattern, with systematic valuation shifts above and below each boundary. (h) In Experiment 3 499 
(perceptual probability estimation), the same boundary manipulation produces equivalent 500 
distortions in subjective probability estimates, demonstrating that boundary repulsion generalizes 501 
across domains. Grey shaded areas mark pre-registered probability bins used for statistical 502 
testing. Black lines show mean responses; grey bands represent ±1 standard error of the mean 503 
(s.e.m.); single and triple red asterisks denote significant effects (p < 0.05 and p < 0.001, 504 
respectively) within pre-registered bins. 505 

Inducing new boundaries reduces variability in lottery valuation and 506 

probability estimation close to the boundaries 507 

A third prediction of our account is that behavioral variability should decrease systematically in proximity 508 

to boundaries, for both natural and experimentally induced boundaries (Fig. 6a, c, e). This 509 

signature arises from the truncation of the posterior due to truncation at the boundaries, leading 510 

to reduced variability in behavior (Fig. 1i). This effect should be stronger for higher levels of 511 

cognitive noise. Following our pre-registered analysis plan, we quantified variability as the 512 

average deviation in reported values or estimates from the mean at each given probability. Then 513 

we calculated a rolling average (window size = 0.1) of this variability measure across the 514 

probability range and compared this measure of variability within our pre-registered probability 515 

bins (bin size = 0.15; grey bins in Fig. 6) (see Methods for full details). We compared these 516 

measures of response variability across different blocks that only differed in the presence or 517 

absence of contextual boundaries, holding stimuli, noise levels, and response scales constant. 518 
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This ensures that any changes in variability could arise only from changes in cognitive inference 519 

due to the presence of the boundaries. 520 

All three experiments confirmed our directional predictions of the effects of boundaries on 521 

variability in behavior, for both risky choice and simple perception. In Experiment 1, the 522 

introduction of a single contextual boundary at 0.5 led to a significant reduction in the variability 523 

of lottery valuations, on both sides of the introduced boundary (compared to blocks without this 524 

introduced boundary, both betas < 0, both p < 0.001; see Tables 4.1.1 and 4.2.1) (Fig. 6b). A dip 525 

in variability near 0.5 in the full-range condition most likely reflects rounding effects (i.e., 526 

participants tend to round off their estimates to values like 25, 50, or 75), but our within-subject 527 

design isolates the specific effect of boundary presence from such baseline effects, since they 528 

should occur in all conditions. In Experiment 2, adding two boundaries at 0.34 and 0.66 produced 529 

the corresponding reductions in variability on both sides of each boundary (all betas < 0, three p 530 

< 0.001, one p < 0.01; see supplementary Tables 4.1.2, 4.1.3, 4.2.2, 4.2.3) (Fig. 6d). These effects 531 

of reduced variability also generalized to perceptual judgments of probability in Experiment 3. 532 

Participants also showed significantly reduced variability near contextual boundaries (all betas < 533 

0, all p < 0.001; see supplementary tables 4.1.4, 4.1.5, 4.2.4, 4.2.5) (Fig. 6f). Thus, the results of 534 

all experiments provide convergent evidence for the co-occurring signatures of distortions and 535 

variance patterns of cognitive boundary repulsions.  536 

Our findings confirm that variability patterns, like average distortions, are systematically shaped 537 

by contextual boundaries—a finding that existing models cannot explain. Context-independent 538 

models either do not predict variability4,5,42 or would not predict changes in variability patterns due 539 

to these experimentally-induced boundaries23,43,44. Context-dependent models that rely on long 540 

term statistical distributions (prior shapes) over probabilities also cannot predict such rapid within-541 

subject changes in variability patterns with simple boundary instructions to participants10,40. While 542 

the distortion patterns we get may in principle also be captured by a rapid change of priors to be 543 

of highest density in the center of the ranges, the localized variance reductions near induced 544 

boundaries can generally not be accounted for by such dynamic priors. Therefore, existing 545 

Bayesian models with flexible centrally shaped priors and fixed log odds encoding17,19 cannot 546 

account for these boundary induced variance changes. In contrast, our account can explain both 547 

biases and variance patterns, as well as their shift with induced boundaries, via the same unifying 548 

mechanism of cognitive boundary repulsions. This mechanism may be embedded in either 549 

Bayesian decoding with a bounded prior (Fig. 6) or in efficient encoding adaptation to bounded 550 

resources (Fig. 7d), which both result in changes in bias and variability. Thus, our boundary 551 
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repulsion account provides a parsimonious mechanistic explanation for the joint contextual 552 

modulation of both distortions and variability across risky choice and perceptual probability 553 

estimation. 554 

 555 

 556 
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Fig. 6 | Effect of induced boundaries on variability in behavior: a, c, e. Model predictions of 557 
variability suppression due to cognitive boundary repulsions under high internal noise 558 
(σ = 0.06). Simulations assume linear encoding and Bayesian decoding with a uniform bounded 559 
prior matched to the experimental block ranges (see Methods). For each condition, trialwise 560 
estimate variability was computed as the rolling standard deviation (window size = 0.1 in 561 
probability space) across the range. a. In Experiment 1 (lottery valuation), the model predicts 562 
reduced variability in certainty equivalents (CEs) near a contextual boundary at 0.5 in restricted-563 
range blocks (red/blue) compared to the full-range block (black), due to posterior compression 564 
near the boundary. c, e. Simulated variability suppression in Experiments 2 and 3 when 565 
boundaries are added at 0.34 and 0.66. Model predicts local dips in variability around each 566 
induced boundary, holding noise constant. b, d, f. Empirical results confirm model predictions 567 
across all three experiments. b. In Experiment 1, introducing a contextual boundary at 0.5 under 568 
high noise significantly reduced variability in lottery valuations on both sides of the boundary. d. 569 
In Experiment 2, boundaries at 0.34 and 0.66 produced systematic reductions in variability 570 
around each boundary during valuation. f. In Experiment 3 (perceptual probability estimation), 571 
the same pattern was observed: variability in probability estimates decreased locally near both 572 
contextual boundaries. Grey shaded areas mark pre-registered probability bins used in 573 
analyses. Black lines show mean variability; grey bands show ±1 s.e.m.; red asterisks mark 574 
statistically significant effects in pre-registered bins (p < 0.05, **p < 0.001). 575 

Do shifts in cognitive boundary repulsions originate at encoding or 576 

decoding? 577 

Our manipulation of contextual boundaries elicited clear boundary repulsion effects: participants 578 

systematically overweighted probabilities above the newly introduced boundaries and 579 

underweighted those below, accompanied by a local reduction in variance near those boundaries. 580 

To identify whether these effects originated from adaptation at the encoding stage—via adapted 581 

efficient coding of the bounded input within the new range—or from Bayesian decoding using 582 

bounded priors, we leveraged the fact that both models make qualitatively different predictions 583 

about the effect of experimentally induced boundaries on response variability (see Methods). 584 

While both mechanisms predict similar effects on variability near the new boundaries, they 585 

diverge in their predictions far away from the newly induced contextual boundaries. 586 

Under efficient encoding, the limited representational resources adapt to the smaller bounded 587 

range of inputs. As a result, the same level of internal noise in this encoded space now 588 

corresponds to a smaller range of inputs, and therefore, any noise-driven distortions and 589 

variability should scale with the bounded input range. A simple test of this prediction is to check 590 

the distortions and variability in behavior close to the natural boundaries of 0 and 1, far away 591 
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from the new induced boundaries. If the noise-driven distortions and variability patterns that 592 

were present here due to the natural boundaries diminish for smaller ranges, this implies 593 

adaptive encoding and thereby an encoding-based origin for the newly introduced contextual 594 

boundaries. In Fig. 7a, the y-axis shows the simulated valuation difference (restricted-range 595 

minus full-range) under adaptive efficient coding with a uniform bounded prior and high noise (σ 596 

= 0.06). The negative difference in the grey regions means that the positive biases normally 597 

observed near 0 and 1 are smaller under restricted ranges than under full ranges. In contrast, 598 

with Bayesian decoding for uniform bounded priors and high noise (σ = 0.06) under non-599 

adaptive encoding, distortions at the natural boundaries remain unchanged (Fig. 7b). Empirical 600 

data from Experiment 1 (Fig. 7c) match this decoding-based signature. The predictions for 601 

variability also differ. Under efficient encoding, compressing the range reduces variability 602 

globally, including near the natural boundaries (Fig. 7d). By contrast, Bayesian decoding 603 

predicts variability decreases only locally around the new boundaries, with no change in the 604 

grey regions (Fig. 7e). Empirical data (Fig. 7f) again support the decoding-based account: 605 

variability reductions occur only near induced boundaries, with no evidence for adaptive 606 

rescaling at the natural boundaries. Thus, the key empirical test is whether noise driven effects 607 

at the original boundaries are range-sensitive (encoding) or range-invariant (decoding). 608 

To formally assess this, we conducted model comparisons using Bayes factors, evaluating 609 

whether including range changes due to contextually introduced boundaries 610 

(probRange) improved model fits for bias and variability in bins far away from the added 611 

boundary. This was done for all three experiments. Simulations and data from Experiment 1 are 612 

shown in Fig. 7 for illustration. 613 

The results reveal that in almost all bins and experiments, Bayes Factors provided evidence that 614 

contextual range does not influence either bias or variability far from the new boundary.	Across 615 

the 12 tests, 10 Bayes factors were < 0.3 (see Supplementary Table 5), supporting the null 616 

hypothesis of no contextual range effect.	These findings offer converging evidence from both bias 617 

and variability patterns, supporting a decoding-based origin for the contextual boundary 618 

repulsions observed in our tasks. The only notable exception occurred in Experiment 2 (Risk 619 

Double) near 0, where both bias and variability exhibited robust evidence for range-dependent 620 

changes (BF₁₀ >> 1; see Supplementary Table 5)—suggesting possible adaptation at the 621 

encoding stage in that specific condition. However, the absence of similar effects elsewhere 622 
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suggests that cognitive boundary repulsions due to newly induced boundaries in our experiments 623 

were largely decoding-based in origin. 624 

 625 
Fig. 7 | Origins of cognitive boundary repulsions at induced contextual boundaries: (a) When 626 
repulsions arise from efficient encoding, introducing a contextual boundary compresses the input range, 627 
causing encoding resources to adapt. This leads to a reduction in noise-driven distortions even at 628 
the original natural boundaries (shaded grey region), where biases due to boundary repulsions would 629 
otherwise be large. (b) In contrast, if repulsions emerge from Bayesian decoding with stable encoding, only 630 
the region near the new boundary is affected, and distortions in the grey region remain unchanged, 631 
showing range-independent effects. This divergence provides a key test: if encoding adapts, distortions at 632 
the original boundaries should shrink; if it doesn’t, they should stay the same. (c) Empirical data from 633 
Experiment 1 show that distortions near the original boundaries do not change with range manipulation—634 
matching the prediction of decoding-based origins and providing no evidence for adaptive encoding in these 635 
regions. (d) Under efficient encoding, compressing the input range also leads to an overall decrease in 636 
variability, including in regions far from the newly introduced boundary (again, shaded grey). (e) In 637 
contrast, Bayesian decoding predicts that variability will dip only near the new contextual boundary, while 638 
remaining stable elsewhere, consistent with a non-adaptive encoding process. (f) Empirical variability 639 
data also show no range-dependent changes near the original boundaries, replicating the decoding-based 640 
signature and providing evidence against dynamic reallocation of representational resources (i.e, adaptive 641 
efficient coding). 642 
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Discussion 643 

Why do people consistently overweight small probabilities and underweight large ones? 644 

Traditionally, this pattern has been understood as a characteristic of risky decision-making and 645 

has been firmly embedded in the dominant model of risky choice4,5. However, similar patterns 646 

have been observed in domains that involve no risk at all, including expected value judgments50 647 

and in simple perceptual judgments of percentages17,51, and the cognitive origins and 648 

determinants of probability weighting are largely unclear. Here we propose that probability 649 

weighting originates from the cognitive processes involved in the inference of any naturally 650 

bounded variable, as often formalized within a two-stage encoding-decoding framework9. In 651 

contrast to other approaches, we do not propose that probability weighting reflects specific 652 

encoding functions or priors employed during this process, but instead arises from general and 653 

optimal computational processes that are foundational for the two stages: either mutual-654 

information-maximizing encoding of bounded quantities or statistically optimal Bayesian decoding 655 

with bounded priors. We show that when the inferred quantities are bounded—such as 656 

probabilities between 0 and 1—both mechanisms can induce systematic repulsions in noise away 657 

from the boundaries. This leads to co-occurring predictions of the classic probability weighting 658 

pattern and a distinctive reduction in behavioral variability near boundaries. Our account of 659 

probability weighting is fully constrained, without requiring any fitted priors or functional 660 

assumptions to explain the major patterns, and instead relies solely on the known bounded 661 

structure of probabilities along with the cognitive noise that is inevitable in the brain’s information 662 

processing. 663 

 664 

Our account predicts that both the shape and strength of probability weighting can be 665 

systematically modified by altering the boundaries and cognitive noise. It also predicts that similar 666 

patterns should occur across different domains of cognition, such as perceptual estimation and 667 

risky valuation tasks. Specifically, increasing cognitive noise should amplify the weighting pattern, 668 

while introducing new contextual boundaries should create additional weighting near the new 669 

boundaries. Crucially, the model predicts not only changes in bias but also distinctive dips in 670 

variability near both natural and induced boundaries, as diagnostic signature of cognitive 671 

boundary repulsions. We tested these predictions in three pre-registered, within-subjects 672 

experiments that manipulated two core factors: cognitive noise, by varying the complexity of 673 

numerical probability formats (e.g., simple vs. complex fractions), and boundary structure, by 674 

explicitly altering the range of probabilities presented within each block (e.g., 0–1, 0–0.5, 0.34–675 
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0.66). Across all conditions, we observed results consistent with our predictions: both the strength 676 

and shape of probability weighting—and the associated variability—shifted systematically in 677 

response to our manipulations. These findings validate the core mechanism of boundary repulsion 678 

under noisy inference and demonstrate its generality across tasks. 679 

 680 

Our work builds on a growing body of research that frames probability weighting not as a fixed, 681 

descriptive weighting function, but as an emergent consequence of noisy cognitive 682 

inference10,14,17,19. These models shift away from traditional descriptive models which treat the 683 

weighting curve as a static, parametric transformation of probability5,42. By modeling internal noise 684 

in encoding or transformation, recent approaches can explain how the strength of distortion may 685 

vary with cognitive load or task demands. However, they still rely on assumptions such as fixed 686 

log odds encoding17,19, encoding prior shapes10 or centrally anchored priors14,17,19 to reproduce 687 

the characteristic patterns. None of these assumptions can account for the large, boundary-688 

sensitive shifts in valuation and perception (up to 15%) we observed when experimentally 689 

introducing novel stimulus boundaries. Moreover, these assumptions also cannot account for the 690 

dips in variability that we induced within-subjects with the boundary manipulations. Alternative 691 

explanations, including truncation of errors at the highest and lowest lottery outcomes23 and 692 

outcome-sampling models that assume noisy memory draws43,44, also cannot account for these 693 

empirical findings. Thus, probability weighting is best understood as a natural consequence 694 

of cognitive boundary repulsion—a parsimonious account that requires no additional 695 

assumptions, explains established patterns of distortions and variance, and uniquely predicts the 696 

novel boundary-sensitive phenomena we validate across three preregistered experiments. 697 

 698 

Beyond risky choice and simple perceptual judgment, our account may be extended to offer a 699 

fresh lens on several other puzzling findings in economic behavior. For instance, the stake size 700 

effect—where individuals exhibit risk-seeking for small stakes and risk aversion for large 701 

ones19,52—may reflect boundary repulsions of values/utilities within the constrained range of 702 

experimental rewards (or biases due to a poorly learnt central prior). Similarly, findings on loss 703 

aversion show that changing the range (contextual boundaries) of gains and losses can alter 704 

behavior53, consistent with our claim that contextual boundaries lead to systematic biases in 705 

perception of key decision variables that propagate into higher order cognition. Further studies 706 

should test the applicability of our account to these empirical patterns. If confirmed, this would 707 

provide converging evidence for the emerging view that revealed preferences as measured with 708 

choice paradigms may partly reflect structured cognitive biases and not (just) intrinsic economic 709 
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preferences45. Recognizing this distinction may help to resolve concerns about the instability of 710 

preferences and may contribute to more mechanistically accurate models of decision-making54,55. 711 

 712 

Our work situates probability weighting within a broader class of perceptual and cognitive biases 713 

that emerge from noisy inference over bounded quantities. In perceptual neuroscience, central 714 

tendency effects in estimation and contraction biases in comparative judgments have been widely 715 

observed across domains such as length, numerosity, time, brightness, and even value56–62. 716 

These paradigms typically involve estimation of stimuli drawn from a constrained range, possibly 717 

forming contextual boundaries that - although not always explicitly instructed - are often implicitly 718 

learned through repeated exposure. The resulting biases, characterized by overestimation of 719 

small magnitudes and underestimation of large ones, closely mirror the boundary repulsion effects 720 

we observe and, like them, scale with cognitive noise. Traditionally, such biases have been 721 

attributed to Bayesian decoding with a central hump-shaped prior, which pulls estimates toward 722 

the mean of the stimulus distribution, thereby creating such central tendency effects59. However, 723 

other work in these perceptual domains has suggested that similar effects may also arise from 724 

decoding with uniform bounded priors, which create repulsions away from the boundaries24–26. 725 

Our account builds on this foundation, but extends it in two ways: first, by showing that boundary 726 

repulsions can emerge from either decoding or encoding processes in dissociable ways; and 727 

second, by explicitly manipulating boundary structure through instructions and demonstrating 728 

their causal role in shaping both probability weighting and variability in perception and valuation. 729 

 730 

The distinction between central tendency and boundary-based biases raises a deeper question 731 

about how structure shapes inference: do people estimate stimulus values primarily from 732 

expectations about their generative distribution, or from knowledge of their boundaries? A recent 733 

study26 embedded both processes in a single computational framework, offering an important tool 734 

for adjudicating between these alternatives. We leverage this insight in our work: Using explicit 735 

boundary manipulations and testing both distortion and variability, we find patterns that are 736 

uniquely consistent with Bayesian decoding using bounded rather than central priors. Moreover, 737 

we extend this approach to a second level of dissociation, identifying not only what kind of prior 738 

is used in decoding, but also whether the observed biases arise from decoding or from resource-739 

rational encoding. Our account predicts that encoding-based repulsions should scale with 740 

stimulus range, producing range-dependent biases and variability, whereas decoding-based 741 

repulsions should remain range-independent.	This is generally consistent with prior work showing 742 
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that behavior and neural representations adapt to stimulus ranges, which can be understood as 743 

a form of efficient encoding31–39,47. Our account builds on this view, by mapping this range-744 

dependent signature back to the cognitive boundary repulsions that may arise due to adaptive 745 

efficient coding. However, across three experiments in two cognitive domains, our data reveal 746 

distortions and variability patterns that were largely range-independent (i.e., repulsions near the 747 

natural boundaries of 0 and 1 in the full range condition were indistinguishable from those 748 

observed when smaller ranges were induced), thereby supporting a decoding-based origin for 749 

boundary repulsions. Even partial encoding adaptation would have produced measurable range 750 

dependence, which we did not observe (except for one condition in Experiment 2). Thus, under 751 

the conditions we studied (probabilities expressed as complex fractions with explicitly instructed 752 

boundaries), encoding appeared to remain largely fixed and decoding appeared far more likely  753 

to explain the observed biases. Importantly, our account now offers a way to dissociate the origin 754 

of similar effects in other settings where encoding may adapt and produce range-dependent 755 

cognitive boundary repulsions, such as choices in different modalities, with longer training, or with 756 

implicitly learned boundaries. Future work should systematically vary these factors to clarify the 757 

timescales and task demands that may shape adaptive encoding in the brain.  758 

Our findings also offer practical implications for both preference elicitation as well as policy 759 

intervention. With regards to preference elicitation, when the aim is to recover true preferences 760 

from observed choices, it is essential to account for distortions introduced by contextual 761 

boundaries. We show that boundary manipulations can shift valuations by more than 15% within 762 

individuals, without changing any objective feature of the decision. This highlights the importance 763 

of recognizing how elicitation methods can systematically influence measured preferences63. 764 

Once the cognitive mechanisms driving these distortions are well-understood, such biases 765 

become predictable and can be accounted for. For policy interventions, the same mechanistic 766 

understanding can be used constructively. Prior work shows that changing choice architecture or 767 

framing can robustly impact real-world choice behavior64,65. Our account identifies two concrete 768 

targets for policy interventions—reducing cognitive noise and reshaping perceived boundaries—769 

that can stabilize decisions and align them more closely with people’s underlying goals and 770 

preferences.  771 

In sum, our work provides a unifying explanation for the emergence of probability distortions in 772 

perception and risky choice, embedded in a single, mechanistic account of bounded noisy 773 

inference. In contrast to the prevailing view of probability weighting under risk as an irrational 774 

idiosyncrasy, we point out that the characteristic pattern of probability weighting emerges from 775 
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optimal, resource-rational cognitive inference of bounded variables under cognitive noise. 776 

Critically, this account offers a tractable way to predict, measure, and intervene on cognitive 777 

biases across domains, from low-level perception to high-level economic decision-making. 778 

Looking ahead, this perspective opens the door to a richer understanding of how cognitive limits 779 

shape behavior and to new possibilities for bridging theories of perception, cognition, and 780 

economic choice. 781 

Methods 782 

Participants 783 

In total, two-hundred-thirty-four (234) healthy young volunteers participated in the three 784 

experiments. Experiments were conducted on different days with non-overlapping groups of 785 

participants. Two pre-registered exclusion criteria were applied. First, for each subject, we 786 

combined data from all blocks and fit a linear regression of certainty equivalents (estimated 787 

probabilities) on presented probabilities. Data points more than 3 z-scores from the mean were 788 

excluded as outliers. This step aimed to remove values likely due to excessive mis-clicks or lapses 789 

of attention. Second, we fit separate linear regressions of certainty equivalents/estimated 790 

probabilities against probabilities for each run. Participants were excluded if any run yielded a 791 

non-positive slope or a slope not significantly greater than zero, as this indicates failure to 792 

integrate probability information meaningfully, suggesting random responding. Before exclusions, 793 

our sample sizes for the three experiments were 84 for experiment 1, 87 for experiment 2 and 63 794 

for experiment 3. After applying the exclusion criteria, we reached the final sample comprising 795 

200 participants consistent with our pre-registered target: 71 (age 19-32 years, 31 females) in 796 

Experiment 1 (risky valuation with one added boundary), 70 (age 19-37 years, 33 females) in 797 

Experiment 2 (risky valuation with two added boundaries), and 59 (age 19-33 years, 32 females) 798 

in Experiment 3 (perceptual probability estimation with two added boundaries). All participants 799 

provided written informed consent prior to participation. Participants received a base show-up fee 800 

of 10 CHF, plus additional monetary compensation between 0 and 40 CHF based on their choices 801 

in the risky valuation experiments or their accuracy in the perceptual estimation experiment. 802 

Testing sessions were conducted at the behavioral lab between 09:00 and 17:00. The study 803 

conformed to the Declaration of Helsinki and was approved by the Human Subjects Committee 804 
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at the Faculty of Economics, Business Administration, and Information Technology at the 805 

University of Zurich. 806 

Procedure 807 

All participants were tested in a behavioral lab equipped with multiple computers, with each 808 

participant seated at a separate workstation. Sessions began with informed consent, followed by 809 

written task instructions and a general set of comprehension questions to assess understanding 810 

of the task. Each participant completed one of three experiments: risky lottery valuation with one 811 

added boundary (Experiment 1), risky lottery valuation with two added boundaries (Experiment 812 

2), or the perceptual probability estimation task (Experiment 3). In all three experiments there was 813 

also a control condition without any boundaries (except the natural ones at 0 and 1) – the full 814 

range. All tasks were block-structured, with each block defined by a specific probability range and 815 

noise level condition. Before each block, participants were explicitly informed of the relevant 816 

probability range and completed short comprehension checks to confirm understanding. 	817 

Participants who answered comprehension questions incorrectly reviewed their responses with 818 

the experimenter and repeated the questions until all answers were correct. This procedure was 819 

enforced by an on-screen instruction requiring participants to call the experimenter by raising their 820 

hand; the screen could only be dismissed using a special key known to the experimenter.	This 821 

step was critical, as the manipulation of cognitive boundaries in our experiment relied on 822 

participants being aware of the probability range presented in each block.  823 

Across all experiments, probabilities were sampled uniformly within the instructed range in steps 824 

of 0.02 in probability space, starting at 0.01 and continuing up to the range’s upper bound. For 825 

example, full-range blocks covered 0.01 to 0.99 (49 values), lower and upper half-range blocks 826 

spanned 0.01–0.49 and 0.51–0.99 (25 values each), and narrower ranges used in Experiment 2 827 

included 0.01–0.33 and 0.67–0.99 (17 values each), as well as a mid-range block from 0.35 to 828 

0.65 (16 values). The number of repetitions per probability value and resulting trial counts per 829 

block differed between the lottery valuation and estimation tasks and are detailed in the 830 

corresponding sections below. Probabilities were presented in randomized order within each 831 

block. Block order was determined using a pre-registered sequential randomization procedure: 832 

participants were first randomly assigned to complete either the full-range or restricted-range 833 

portion of the task. Within the restricted-range portion, the order of low, high, and mid-range blocks 834 

(as applicable) was randomized. Within each range section, the order of the noise conditions—835 
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low versus high—were also independently randomized. In low-noise conditions, probabilities were 836 

presented as simple fractions over 100 (e.g., 32/100). In high-noise conditions, probabilities 837 

appeared as complex fractions composed of randomly generated four-digit numerators and 838 

denominators (e.g., 3724/8126). These complex fractions were generated prior to the experiment 839 

and were held constant across all participants and experiments. Fraction formats were introduced 840 

in the instructions and remained consistent within blocks.  841 

Each session lasted approximately 1 hour and 15 minutes. In the risky lottery valuation tasks, 842 

participants were compensated based on one randomly selected trial per block, using a Becker–843 

DeGroot–Marschak (BDM) auction procedure66. In the perceptual estimation task, payment was 844 

based on accuracy of probability judgments, as described below. All tasks were implemented 845 

using MATLAB R2024a with the Psychophysics Toolbox (Psychtoolbox) and presented on 24.5-846 

inch monitors with a 1920 × 1080 pixel resolution and a 60 Hz refresh rate. All participants 847 

completed the tasks on identical setups in a controlled behavioral testing environment. 848 

Risky lottery valuation task 849 

Experiments 1 and 2 employed a risky lottery valuation task in which participants indicated the 850 

minimum amount of money (certainty equivalent, CE) they would accept instead of playing a 851 

lottery offering a fixed payoff of 50 experimental currency units (ECU) with varying probabilities 852 

(Fig. 2a). Each trial began with a fixation cross displayed for 0.5 seconds, followed by the 853 

presentation of the lottery and response screen. Lotteries were presented on a standard computer 854 

monitor against a gray background, centered horizontally and shifted upward by 5% of the screen 855 

height, while participants’ certainty equivalents appeared at the exact screen center as they were 856 

entered. Participants had up to 9 seconds to enter their CE using number keys on the computer 857 

keyboard, for a total response window of 9.5 seconds. Invalid responses outside the 0–50 ECU 858 

range were flagged in red to allow correction. Once a response was submitted or the time expired, 859 

after a 0.5-second break, the next trial began. Both experiments used a two-factorial within-860 

subjects design, crossing probability range and cognitive noise level (Fig. 2b–c). In Experiment 1, 861 

participants completed six blocks, crossing three probability ranges—full (0–1), low (0–0.5), and 862 

high (0.5–1)—with two noise levels: low noise (simple fractions over 100) and high noise (complex 863 

four-digit fractions). In Experiment 2, participants completed eight blocks with four probability 864 

ranges: full (0–1), lower (0–0.33), middle (0.35–0.65), and upper (0.67–1), crossed with the same 865 

two noise levels. In each block, every probability value sampled from the specified range was 866 
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presented twice, resulting in approximately 100 trials per full-range block, 50 trials for half-range 867 

blocks, 34 trials for the narrow low and high blocks, and 32 trials for the mid-range block. 868 

Participants were allowed to enter any CE between 0 and 50 ECU, regardless of the probability 869 

range, to avoid mechanical boundary effects. At the end of the task, one trial was randomly 870 

selected from each block for payment. A BDM auction procedure was employed to determine the 871 

payout: the experiment computer generated a random offer between 0 and 50 ECU. If the 872 

participant’s CE was higher than the offer, they played the lottery; if same or lower, they received 873 

the computer’s offer instead. The average payoff across selected trials determined the 874 

participant’s final bonus. 875 

Perceptual estimation task 876 

Experiment 3 used a perceptual estimation task in which participants judged visually presented 877 

probabilities and reported their estimates as percentages between 1 and 99% (Fig. 2d). Each trial 878 

began with a 0.5-second fixation cross, followed by the presentation of a fraction representing a 879 

probability. Fractions were presented on a standard computer monitor against a gray background, 880 

centered horizontally and shifted upward by 10% of the screen height, while participants’ 881 

probability estimates appeared at the exact screen center as they were entered. Participants had 882 

up to 5 seconds to type their estimate using number and decimal keys and confirmed their 883 

response by pressing Enter. Invalid responses outside the 1–99 range were flagged in red, 884 

allowing correction. Once submitted or timed out, the fixation cross briefly turned green, and after 885 

a 0.5-second break, the next trial began. The task followed a two-factorial within-subjects design, 886 

crossing probability range and noise level (Fig. 2e–f). Participants completed eight blocks 887 

comprising four probability ranges: full (0–1), lower (0–0.34), middle (0.34–0.66), and upper 888 

(0.66–1), crossed with two noise conditions: low (simple fractions over 100) and high (complex 889 

four-digit fractions). As in the valuation experiments, probabilities were uniformly sampled in steps 890 

of 0.02 and presented in random order. In low-noise blocks, each probability was presented once. 891 

In high-noise blocks, each probability was presented five times, allowing for a more reliable 892 

measurement of estimation variability. In the low-noise condition, participants could effectively 893 

respond by reading and converting the numerator of the simple fraction (e.g., the correct response 894 

for 34/100 was 34). Participants were instructed to be as accurate as possible. Payment was 895 

based on the error of their responses: For each trial, the absolute deviation between the 896 

participant’s estimate and the true probability was computed. The total deviation across trials was 897 
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penalized using the formula: bonus = 40 CHF – (total deviation × 2.5 / 600). A base compensation 898 

of 10 CHF was guaranteed, and no participant received less than this amount. 899 

Theory: Cognitive boundary repulsions from encoding and 900 

decoding 901 

In the following, we formalize how cognitive boundary repulsions - biases away from the 902 

boundaries of a bounded quantity, accompanied by reduced variability near boundaries - emerge 903 

generically in a two-stage inference framework comprising noisy encoding followed by Bayesian 904 

decoding. These repulsions can arise independently from two distinct mechanisms. 905 

First, under efficient encoding, limited representational capacity combined with mutual information 906 

maximization induces asymmetric, truncated likelihoods near the boundaries. These lead to 907 

range-dependent boundary repulsions. 908 

Second, under Bayesian decoding, even with unconstrained or inefficient encoding, applying a 909 

bounded prior truncates the posterior, producing boundary repulsions in noise that are range-910 

invariant.  911 

These subtly different predictions of these two accounts of boundary repulsion yield distinct 912 

behavioral signatures, which we exploit to test the origin of distortions in our experiments. 913 

Boundary repulsions at the encoding stage: Resource-rational efficient 914 

coding 915 

We model the noisy encoding process as:  916 

 η=F(b)+ϵ  

 

(1) 

where 𝐹(𝑏)	is a deterministic encoding function mapping stimulus 𝑏	 ∈ 	 [𝑏!, 𝑏"] onto a bounded 917 

representational space η	 ∈ 	 [0, 𝐶],			ϵ is zero-mean, symmetric noise truncated to remain within 918 

the resource bounds [0, 𝐶]. 919 
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Boundary repulsions due to efficient encoding 920 

We assume that the encoding function 𝐹(𝑏) is optimized to maximize mutual information 𝐼(𝑏; 	𝜂) 921 

between stimulus (b) and internal representation (η). Mutual information is:  922 

 𝐼(𝑏; η) = 𝐻(η) − 𝐻(η ∣ 𝑏) (2) 

Because the representational space is bounded, noise is also truncated at 0 and C, introducing 923 

asymmetries in noise and the likelihood function due to truncation as soon as 𝐹(𝑏) deviates from 924 

the center of the representational space (0.5C). At 𝐹(𝑏) 	= 	0.5𝐶, truncation is symmetric, and so 925 

is the likelihood (𝐿(𝜂 ∣ 𝑏)). At 𝐹(𝑏) 	< 	0.5𝐶, negative noise is preferentially truncated, inducing 926 

positive skew in the likelihood. At 𝐹(𝑏) 	> 	0.5𝐶, positive noise is preferentially truncated, inducing 927 

negative skew. These truncation-induced asymmetries emerge whenever the internal noise has 928 

sufficient spread relative to the bounds — as is typically the case with realistic noise distributions 929 

like Gaussian, Laplace, or Poisson. For such distributions, even small deviations of 𝐹(𝑏) from the 930 

center of the representational space (i.e., 0.5C) lead to truncation-induced asymmetries in the 931 

likelihood. In contrast, for very narrow or strictly bounded noise (e.g., uniform over a small 932 

interval), these asymmetries only arise near the edges. 933 

Due to truncation at [0, 𝐶], the likelihood function and conditional entropy satisfy mirror symmetry 934 

around the center point of the representational space (𝐹(𝑏) = 0.5𝐶):  935 

 936 

 𝐿(η ∣ 𝐹(𝑏)) = 	𝐿(𝐶 − 𝜂 ∣ 𝐶 − 𝐹(𝑏)) (3) 

 𝐻(𝜂 ∣ 𝐹(𝑏)) 	= 𝐻(𝜂 ∣ 𝐶 − 𝐹(𝑏)) (4) 

To formally show that mutual information maximization requires the encoding function F(b) to 937 

utilize both sides of the encoding space around 0.5C, assume for contradiction that the optimal 938 

encoding function only spans one half: 𝐹(𝑏) ∈ 	 [𝑥, 𝑦] ⊂ 	 [0𝐶, 0.5𝐶]. Then, define a mirrored 939 

encoding function F’(b) 	= 	C	 − 	F(b)	 which spans the corresponding region on the other half [C −940 

	𝑥, C − 	𝑦] 	⊂ 	 [0.5𝐶, 𝐶]. By equation (3), the conditional entropy is the same for F and F’. However, 941 

combining both mirrored encodings F and F’ would cover a wider span of the representational 942 

space increasing the marginal entropy 𝐻(η). This contradicts our initial assumption of 943 

maximizing mutual information, given in equation (2). Therefore, the optimal encoding (F) must 944 
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span both sides of the representational space around 0.5C to maximize mutual information. Since 945 

truncation-induced asymmetries on the two sides of 0.5C induce inward skew, this result implies 946 

a general consequence. When a bounded quantity is encoded into a limited capacity 947 

representational space under mutual information maximization, the resulting representations 948 

exhibit cognitive boundary repulsions. This leads to an overestimation for small quantities 949 

transitioning to underestimation for large ones, where the transition point depends on the shape 950 

of the prior distribution constraining the encoding function under efficient coding (see 951 

Supplementary Fig. 1 for numerical simulation examples showing this).  952 

While our theoretical derivations define efficient coding as maximizing mutual information 953 

between stimuli and internal representations13,46,67,68, exact closed-form solutions are generally 954 

unavailable because MI optimization is analytically intractable for most realistic noise distributions. 955 

In practice, MI-optimal solutions are often approximated using Fisher information under additional 956 

assumptions about the noise structure67,68. For our simulations, we therefore implemented 957 

efficient encoding using the cumulative distribution function (CDF) transform of the prior, a classic 958 

redundancy-reducing code12 that equalizes responses and, under small symmetric noise 959 

assumptions, closely approximates MI-optimal encoding13,67. Even though with truncated 960 

Gaussian noise, the CDF transform is not strictly a mutual information maximizing efficient code, 961 

it nonetheless provides a principled and widely used approximation that captures the qualitative 962 

signatures of efficient coding. Our simulations with this approach robustly reproduced the 963 

theoretically predicted boundary repulsion effects, supporting our theoretical claims 964 

(Supplementary Fig. 1). 965 

 966 

Range dependence of cognitive boundary repulsions due to efficient coding 967 

Let the original bounded stimulus be 𝑏	 ∈ 	 [𝑏!, 𝑏"] and the encoding function 𝐹(𝑏): [𝑏1, 𝑏2] → [0, 𝐶] 968 

be efficient in the sense of maximizing mutual information according to the prior distribution (p(b)). 969 

Now, consider linearly stretching the input range by a factor k > 0, such that (𝑏′ = 𝑘 ⋅ 𝑏), and 𝑏′	 ∈970 

	[𝑘𝑏!, 𝑘𝑏"]. We assume that the prior scales accordingly, preserving its shape:	𝑝# 	(𝑏′) 	= 		
!
#
𝑝(𝑏) 	=971 

!
#
	𝑝($%

#
).  972 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 11, 2025. ; https://doi.org/10.1101/2025.09.11.675565doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.11.675565
http://creativecommons.org/licenses/by/4.0/


 

 

 

38 

Since the efficient encoder is defined based on the prior, the new encoding function over the 973 

stretched range satisfies 𝐹# 	(𝑏′) 	= 	𝐹($%
#
). This simply says that encoding a stretched input b’ is 974 

equivalent to encoding the original unscaled value 𝑏 = 	 $%
#

. 975 

Differentiating both sides with respect to b’ gives: 976 

 𝑑𝐹#
𝑑𝑏′

= 	
1
𝑘
𝑑𝐹
𝑑𝑏

 (5) 

Equation 5 implies that the slope of the encoding function with respect to the stretched input b’ is 977 

scaled down by a factor of 1/k. That means the encoding becomes less sensitive (flatter) to inputs 978 

when 𝑘	 > 	1 and more sensitive (steeper) when 𝑘	 < 	1. Now consider how the same levels of 979 

cognitive noise in this new encoded space affect the corresponding perturbations in the stimulus 980 

space. 981 

 Δb% =	
𝜖
𝑑𝐹#
𝑑𝑏′

= 	𝑘
𝜖
𝑑𝐹
𝑑𝑏

= 𝑘Δ𝑏 (6) 

 982 

Hence, both bias and variance in external stimulus estimates scale linearly with the stimulus range 983 

under efficient encoding. Expanding the input range forces internal resources to stretch thinner, 984 

reducing local precision and amplifying both bias and variability in behavior for the same levels of 985 

cognitive noise. 986 
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Conclusion 987 

Efficient encoding of bounded quantities leads to inward-skewed likelihoods near the boundaries, 988 

producing cognitive boundary repulsions. Crucially, these distortions scale with the external range 989 

of input: expanding the stimulus range increases both the magnitude of bias and variability. This 990 

result holds generically for any prior distribution that stretches proportionally but conserves its 991 

shape with the stimulus range. Thus, the range dependence of boundary repulsions is a robust 992 

consequence of resource-rational efficient coding under bounded capacity.  993 

Cognitive boundary repulsion in posterior: Bayesian decoding 994 

Even in the absence of efficient coding constraints, cognitive boundary repulsions can emerge 995 

naturally at the decoding stage when Bayesian decoding is applied to bounded quantities. 996 

Specifically, when internal representations η are decoded via Bayes’ rule using a prior p(b) 997 

defined over a bounded domain 𝑏	 ∈ 	 [𝑏!, 𝑏"], the resulting posterior distribution is necessarily 998 

truncated near the boundaries, inducing distortions in the decoded estimates. The encoding is 999 

still given by equation 1 defined above where F(b) is a deterministic, monotonic encoding function 1000 

(here not necessarily efficient), and ϵ is zero-mean, symmetric noise (e.g., Gaussian, or any other 1001 

zero-mean, symmetric noise distribution) that is independent of b. Given that limited 1002 

representational resources are no longer assumed, the noise and likelihood are taken to be 1003 

symmetric and untruncated. Now, at decoding, the brain computes the posterior via: 1004 

 𝑃𝑟(𝑏 ∣ 𝜂) ∝ 𝐿(𝜂 ∣ 𝑏) × 𝑃𝑟𝑖𝑜𝑟(𝑏),	 (7) 

where the 𝑃𝑟𝑖𝑜𝑟(𝑏) is bounded such that 𝑃𝑟𝑖𝑜𝑟(𝑏) 	> 	0 for 𝑏	 ∈ 	 [𝑏!, 𝑏"], and 𝑃𝑟𝑖𝑜𝑟(𝑏) 	= 	0 1005 

otherwise. Multiplying the likelihood by the bounded prior truncates the posterior at 𝑏!,	 and 𝑏". 1006 

Thus, the posterior distribution exhibits inward boundary repulsions even when encoding noise is 1007 

untruncated and independent of b. This again leads to an overestimation for small quantities 1008 

transitioning to underestimation for large ones where the transition point from right to left skew 1009 

depends on the shape of the prior distribution and the encoding function (see Supplementary 1010 

Figs. 2, 3). 1011 
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Range invariance of decoding-based boundary repulsions 1012 

As shown above, even when encoding is non-adaptive and does not impose resource-based 1013 

truncations in the likelihood, Bayesian decoding of bounded quantities still leads to cognitive 1014 

boundary repulsions through posterior truncation. Crucially, unlike encoding-based cognitive 1015 

boundary repulsions, the boundary repulsions arising from Bayesian decoding do not scale with 1016 

the stimulus range. When the entire input space is linearly stretched by a factor k, and encoding 1017 

does not efficiently adapt to this new input range, the likelihood remains unchanged. This implies 1018 

that the same levels of encoding noise led to the same corresponding perturbations in the stimulus 1019 

space. The bounded prior only plays a role during decoding to truncate the posterior, inducing 1020 

cognitive boundary repulsions. However, since the likelihood is unchanged and the posterior still 1021 

maps to the same corresponding input, the corresponding perturbations in behavior remain range-1022 

invariant. Therefore, while both biases and variance are range-dependent for encoding based 1023 

cognitive boundary repulsions, they remain range invariant when they arise entirely during 1024 

decoding. This distinction offers a critical theoretical and empirical dissociation between the two 1025 

origins. 1026 

Simulations 1027 

All model simulations in Figs. 3–6 are based on Bayesian decoding of noisy internal 1028 

representations derived from linearly encoded, bounded input probabilities with symmetric, 1029 

untruncated noise during encoding. Bayesian decoding was applied using a uniform prior 1030 

truncated to the contextual range of probabilities for each condition (e.g., [0–0.5], [0.5–1], 1031 

[0.34–0.66]), reflecting the actual empirical prior distribution. Posterior means were 1032 

computed for each internal representation to obtain predicted estimates. Two fixed levels 1033 

of internal noise were used across all simulated predictions across all datasets: a low-noise 1034 

condition (σ=0.02) and a high-noise condition (σ=0.06). These values were not fit to 1035 

individual datasets or varied across simulations; they were chosen to match empirical 1036 

behavioral variability and held constant across all experiments and domains. In valuation 1037 

simulations (Experiments 1 & 2), inferred probabilities were simply multiplied by a fixed 1038 

reward magnitude (v = 50 ECU) to generate predicted certainty equivalents. Variability 1039 

plots (e.g., Fig. 6) were generated by taking two posterior samples for each probability level 1040 

and computing the absolute deviation of those samples from the mean of the sampled 1041 

estimates for that probability (!
&
	∑ |𝑠' −	

!
&
∑ 𝑠(|( )' . This process was repeated over a large 1042 
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number of simulated subjects (N = 1000 repetitions), and the mean deviation across 1043 

simulated participants was computed for each probability. These deviations were 1044 

then smoothed using a rolling average (window size = 0.1 in probability space) to produce 1045 

the final predicted variability profile for each condition. This method closely mirrors the 1046 

empirical calculation used in the data analyses, where observed deviations were computed 1047 

relative to the empirical mean estimate at each probability. 1048 

 1049 

For fig. 7, comparing encoding- and decoding-based origins of boundary repulsions under 1050 

contextual range manipulations, parameter values used were identical to those used for 1051 

simulations in Figs. 3–6. For the decoding-origin simulations, probabilities were linearly 1052 

encoded with additive Gaussian noise and decoded with a uniform prior truncated to the 1053 

relevant range ([0–1], [0–0.5], [0.5–1]). For the encoding-origin simulations, efficient coding 1054 

was approximated by the normalized CDF of the uniform prior within the relevant range. 1055 

Noise was modeled as Gaussian truncated to the representational bounds and decoding 1056 

again used a uniform prior over the contextual range. Bias was computed as the difference 1057 

in posterior means between restricted- and full-range conditions (restricted-range minus 1058 

full-range) (Fig. 7a–b), and variability as mean of absolute deviations of posterior samples 1059 

from the sample mean (!
&
	∑ |𝑠' −	

!
&
∑ 𝑠(|( )'  (N = 1000 repetitions; Fig. 7d–e). Encoding-1060 

origin simulations predict range-dependent changes at the natural boundaries, while 1061 

decoding-origin simulations predict range-invariant effects, matching our theoretical 1062 

predictions. 1063 

Data analysis 1064 

All behavioral analyses were conducted using pre-registered generalized linear mixed-effects 1065 

models of the form: 1066 

 
 
Reported ∼ 1 + p + probRange × noiseType + (1∣subject) 

 

(8) 

where Reported denotes either the certainty equivalent (valuation tasks) or the probability 1067 

estimate (estimation task), depending on the experiment. This model tested the effects of 1068 
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objective probability (p), contextual boundaries (probRange), cognitive noise (noiseType), and 1069 

their interaction, with random intercepts for subjects to capture individual variability. 1070 

To avoid overfitting trial-level noise and to focus on theoretically relevant regions, all tests were 1071 

performed within pre-registered probability bins. For distortions (Hypotheses 1–3), bins of width 1072 

0.1 in probability space were defined adjacent to natural and contextual boundaries (e.g., [0.0–1073 

0.1], [0.9–1.0], [0.4–0.5], [0.5–0.6]). For Hypothesis 4, which tested predictions about behavioral 1074 

variability, the same model structure was used, but with the rolling average of trial-wise absolute 1075 

deviations from the mean (variability) as the dependent variable. As the variability measure is 1076 

noisier by nature, wider bins of width 0.15 were pre-registered (e.g., [0.35–0.5], [0.5–0.65]). 1077 

Exact mixed-effects model results for all hypotheses are reported in Supplementary Tables 1–4. 1078 

Our four pre-registered hypotheses were: 1079 

Hypothesis 1 was to test the effect of cognitive noise near the natural probability boundaries. 1080 

The factor of interest was noiseType. We predicted that high cognitive noise would amplify 1081 

distortions at the boundaries of 0 and 1. To test this, we examined the effect of noiseType within 1082 

the bins [0.0–0.1] (above 0) and [0.9–1.0] (below 1). The results confirmed the prediction, 1083 

showing significant overweighting above 0 and underweighting below 1 under high noise (see 1084 

Supplementary Table 1 for exact model outputs). 1085 

Hypothesis 2 addressed the effect of contextual boundaries. Here we predicted that introducing 1086 

new boundaries would alter distortions, leading to reduced estimates below a boundary and 1087 

increased estimates above it. This was tested as the effect of probRange in bins adjacent to 1088 

induced boundaries, for example [0.4–0.5] and [0.5–0.6] for a boundary at 0.5. The results 1089 

showed strong and significant shifts in the expected directions, supporting the prediction (see 1090 

Supplementary Table 3). 1091 

Hypothesis 3 focused on the interaction between contextual boundaries and cognitive noise. We 1092 

predicted that distortions induced by contextual boundaries would be stronger when cognitive 1093 

noise was high. This was tested as the probRange × noiseType interaction in bins adjacent to 1094 

the induced boundaries. The results confirmed this prediction, showing robust interaction effects 1095 

in the expected direction (see Supplementary Table 2). 1096 

Hypothesis 4 examined the effect of boundaries on variability. For this hypothesis, the 1097 

dependent measure was trial-wise variability, modeled as 1098 
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rolling_avg_variability∼1+p+probRange×noiseType+(1∣subject) 

 

(9) 

We predicted that variability would decrease near contextual boundaries under high noise. This 1099 

was tested as the effect of probRange in preregistered bins of width 0.15 around induced 1100 

boundaries. The results again supported the prediction, showing significant within-subject 1101 

reductions in variability near all contextual boundaries (see Supplementary Table 4). 1102 
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