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Abstract

The brain represents magnitudes through the collective activity of neural popula-
tions, whose non-monotonic tuning properties determine the nature and precision of
the population neural code1–9. Whether and how this code adapts to changes in the
statistics of the encoded magnitudes remains unknown. Here we probe the adaptation
of the encoding of numbers in human parietal cortex, using functional MRI during a
numerosity-estimation task in which we vary the range of possible numbers. Track-
ing the tuning properties of number-sensitive populations as the range changes, we
show that their receptive fields shift and scale in adaptation to the range, following
a structured and predictable pattern. This distributed range adaptation implements
efficient coding10–13 dynamically: the resulting precision of the neural code varies with
the range and is accompanied by corresponding changes in behavioral precision. At
the participant level, the degree of neural tuning adaptation significantly correlates
with the change in behavioral variability. Our results extend static sensory efficient
coding to the adaptive representation of abstract magnitudes, via a neural mechanism
of distributed range adaptation that may be a canonical property of neural encoding
circuits.
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Efficient coding prescribes that the brain’s representational resources should be opti-
mally allocated across the stimuli that one may encounter10–13. Accordingly, neural tuning
curves in various sensory systems are efficiently adapted to the statistics of the sensory
stimuli that they encode14,15. Yet in natural environments, stimulus statistics typically fluc-
tuate over time and across contexts. For coding to remain efficient, neural representations
must therefore be flexible and adapt to these changes. One form of such flexibility is ‘range
adaptation’, whereby neurons with monotonic tuning modulate their gains to effectively
map the current stimulus range onto their limited response range16–19. However, across
many species and sensory modalities, the most widespread form of representation relies on
populations of neurons with non-monotonic, bell-shaped tuning curves (e.g., orientations1,
motion direction3, spatial frequency4, sound frequency2, whisker angle5, and numerosity6,
among others7). The notion of monotonic range adaptation has no clear analogue in these
distributed codes. Hence, although such networks are the predominant form of neural
representation, it is largely unknown whether and how they adapt to changes in stimulus
statistics.

There is, however, some evidence that distributed neural representations are not static:
experimental studies have exhibited shifts of neuronal tuning curves, when a stimulus is
the locus of attention or when it is repeatedly presented, and in the encoding of reward in-
tervals20–26. Here we propose that this flexibility more generally enables neural populations
to adapt to changing stimulus statistics. Specifically, we hypothesize that when the range
of possible stimuli changes, the receptive fields of the encoding neural populations shift
and scale in a way that efficiently remaps neural representations to cover the new range.
We call this mechanism ‘distributed range adaptation’. It involves the concerted adaptation
of the entire sensory network to a change in the range of stimuli. This neural mechanism
could be a property shared by many sensory circuits, enabling the flexible allocation of
processing resources to achieve optimal sensitivity, in line with the principle of efficient
coding.

Here we examine our proposal in the context of number representation in humans.
Previous research on neural tuning and perception has often focused on the sensory
encoding of physical attributes of stimuli (e.g., orientations). Yet many natural decisions
are based on abstract quantities that are not directly rooted in physical magnitudes7,27–30.
In particular, the ability to represent and act upon numerical information is a fundamental
skill shared across a wide evolutionary range of species, from primates to squids31–33. In
humans, this ‘number sense’ is supported by number-sensitive neurons that exhibit bell-
shaped receptive fields centered on their preferred numerosities33–37. Recent behavioral
evidence shows that the perception of numbers by humans exhibits larger errors when the
range of possible numbers in a task increases, suggesting a dynamic and efficient adaptation
of number representations38–41. Whether and how this reflects a reallocation of encoding
resources at the neural level is unknown, but shifts in the tuning of number-sensitive
populations have been reported24,42, making number representation a good candidate to
probe distributed range adaptation in humans.

We investigate our proposal in 39 participants tasked with estimating the number of
dots in visual displays while undergoing 3T functional MRI, as we manipulate the range
of the distribution of numbers (the prior). Neurocomputational modeling of the fMRI
data with numerical population receptive field (nPRF) models35 enables us to identify
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tuning properties of numerosity-selective populations in the intraparietal sulcus (IPS),
quantify their changes across priors, and test our hypotheses. We find that the preferred
numerosities of the neural populations shift across priors in a way that closely aligns with
the quantitative predictions of our proposal. In addition, the widths of the population
receptive fields broadenwith thewidth of the prior. Across priors, the encoding populations
thus reorganize in a structured fashion to efficiently cover the relevant range, consistent
with distributed range adaptation.

Identifying the tuning properties of neural populations also enables us to quantify
the representational acuity of the neural population code. With a wider prior, we find
that the neural encoding is less precise, consistent with the hypothesis that distributed
range adaptation implements efficient coding. The fMRI data, moreover, correlates with
individual variations in behavior. Specifically, the individual changes in neural encoding
across priors correlate with the individual changes in response precision, supporting
the behavioral relevance of the dynamic efficient neural coding evident in the parietal
populations. Finally, we also show that within the context of a given prior, the neural data
correlate with individual variations in how participants compress larger numbers (Weber’s
law): participants whose neural precision decreases faster with large numbers provide less
precise estimates for these numbers.

Overall, our results extend the principles of sensory efficient coding to the dynamic
adaptation of abstract numerical representations in humans, mediated by distributed range
adaptation as a possible canonical mechanism of sensory circuits. Our work also highlights
how encoding models for fMRI can be leveraged to probe the neural substrates of cognitive
representations, and to establish links, at the individual level, between neural activity and
decision-making.

Behavioral variability and distributed range adaptation
On each trial of a numerosity-estimation task conducted in an MRI scanner, we present
participants with a cloud of dots for 600ms and ask them to provide their best estimate
of the number of dots (Fig. 1a). This number is randomly sampled from a uniform prior,
whose width differs in two experimental conditions. In the ‘Narrow’ condition, the number
of dots ranges from 10 to 25, while in the ‘Wide’ condition it ranges from 10 to 40. The prior
width in the Wide condition is thus twice as large as in the Narrow condition (Fig. 1c; see
Methods).

The variability in participants’ estimates is greater in theWide condition than in the Nar-
row condition (Fig. 1b), replicating previous results38. This increased variability suggests
a more imprecise representation of the numbers with the Wide prior. In turn, this points
to an adaptive and dynamic implementation of efficient coding in which the allocation of
representational resources optimally adjusts to the current range of numbers, resulting in
lower precision for each number under the Wide prior.

We hypothesize that the observed changes in behavioral variability reflect changes in
the neural code for numerosity that implement efficient coding dynamically. Numerosity-
sensitive neural populations have bell-shaped receptive fields characterized mainly by their
preferred numerosities and their widths35,43. Collectively, these tuning properties define
the precision of the encoding network for the different stimuli. Efficient-coding models
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Fig. 1: Behavioral task and illustration of distributed range adaptation. a, Numerosity-
estimation task conducted in the MRI scanner. The participant is asked to estimate the
number of dots in a cloud presented for 600ms. This number is randomly sampled from
a Narrow or a Wide range (see c), and each participant experiences twice each prior
across two experimental sessions. b, Standard deviation of the participants’ responses as
a function of the correct number, in the two conditions. Participants are more variable
with the Wide prior. Shaded areas show the 5%-95% credible intervals (see Methods).
c, Narrow and Wide uniform priors used in the two conditions of the experiment. The
Wide prior (10-40) is twice as large as the Narrow prior (10-25). d, Schematic illustration
of distributed range adaptation: the populations’ receptive fields in the Narrow condition
(top panel) are re-allocated in the Wide condition (bottom panel), to efficiently cover the
wider range. Hence the receptive fields shift and widen, and over the Narrow range the
preferred numerosities in the Wide vs the Narrow condition describe a line of slope 2, the
ratio of the prior widths (e).

prescribe that this precision should match the prior, i.e., more frequent stimuli should
be encoded with greater precision12,13. Yet these models typically do not specify how the
encoding should transition across priors: in other words, it is unclear what the tuning
properties under one prior should become under another prior.
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We thus formulate a hypothesis regarding the changes in tuning. This hypothesis is
motivated by several observations: (i) For numerosity and many other stimuli, neural
populations are topographically organized: neurons with similar tuning cluster together35;
(ii) local shifts of preferred stimuli have been observed, including in number-sensitive
populations20–26,42; (iii) several efficient coding models prescribe that, given a prior, the
proportion of neurons tuned to specific stimuli should be proportional to the probabilities
of those stimuli8,12,44; a recent model shows that efficient coding accounts for the local
shifts just mentioned and at the same time predicts that these shifts should modulate the
density of preferred stimuli, in adaptation to the prior width39; and (iv) in monotonic range
adaptation (with single neurons), themapping between the stimulus and the representation
scales across priors so as to optimize the use of the representational range16–19.

These observations prompt us to hypothesize that the populations’ preferred numerosi-
ties maintain their relative ordering, and shift differentially such that they stay tuned to
the same quantiles, across priors. Denoting by µn and µw the preferred numerosities of a
population in the Narrow and Wide conditions, this implies that µw is a (monotonic) func-
tion of µn, a constraint that precludes populations with identical preferred numerosities in
one condition to have entirely different tunings in the other condition. More specifically,
our hypothesis is that

Pw(µw) = Pn(µn), (1)
where Pw and Pn are the cumulative distribution functions (CDFs) of theWide and Narrow
priors, respectively. For preferred numerosities in the Narrow range (µn ∈ [10, 25]) this
implies a linear relationship,

µw = 10 + 2(µn − 10), (2)
where the slope 2 is the ratio of the priors widths. Under this hypothesis, two preferred
numerosities in the Narrow range and separated by dµn, in the Narrow condition, are
predicted to be separated by twice this distance, dµw = 2 dµn, in the Wide condition. Infor-
mally, the preferred numerosities thus “spread out” to cover the wider prior, a collective
adjustment that we call distributed range adaptation (Fig. 1d). Consistent with efficient
coding, less resources are thus dedicated to each number in the Wide condition, resulting
in lower precision. Note that distributed range adaptation is not in itself a prediction of
efficient coding; rather, it is a proposed mechanism to attain efficient coding flexibly, in
sensory networks.

Numbers below 10 have vanishing probabilities under both priors (∀µn, µw ≤ 10,
Pw(µw) = Pn(µn) = 0), thus our hypothesis (Eq. 1) does not uniquely determine the
relation across conditions between the preferred numerosities in this range. Here we
simply conjecture that the preferred numerosities remain stable, i.e., µn = µw. We note
that this is also the prediction we would make under our hypothesis, if we additionally
assumed that participants held subjective priors that were mixtures of the correct prior in
each condition and of a constant distribution, such as a long-term prior, that allocated non-
vanishing probabilities to numbers below 10. However, in our analyses, we also examine
the alternative possibility that preferred numerosities scale by the same ratio everywhere,
i.e., µw = 2µn (see Supplementary Information).

To illustrate, if a population’s preferred numerosity is 15 in the Narrow condition, our
hypothesis (Eq. 1) is thus that it will shift to 20 in the Wide condition. We call such changes

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2025. ; https://doi.org/10.1101/2025.09.25.675916doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.25.675916
http://creativecommons.org/licenses/by-nc-nd/4.0/


Right NPC

a b

R2 Preferred numerosity

S12 S20 S26
Narrow condition Narrow condition Narrow condition

Wide condition Wide condition Wide condition

Fig. 2: Maps of numerical population receptive fields show shifts of voxels’ preferred nu-
merosities. a, Explained variance (R2) of the nPRF ‘free-shift’ model across 39 participants
in fsaverage-space. The outlined area indicates the right NPC mask used in all analyses.
b, Individual maps of preferred numerosities in the two conditions. From the Narrow
to the Wide condition, preferred numerosities generally shift upwards. In the ‘free-shift’
model, there are no constraints on the relationship between the two conditions, and each
preferred-numerosity parameter of each voxel in each condition is fitted separately.

in preferred numerosities ‘efficient shifts’ (Fig. 1e). This ‘efficient-shift’ relationship is
a quantitative prediction that puts a strong constraint on the receptive fields we should
observe across priors.

Finally, regarding the widths of the receptive fields, some efficient-codingmodels posit a
‘tiling’ property that postulates an inverse relationship between receptive-field density and
width12,44. Thus one might expect the widths to double in size in our experiment, following
the doubling of the prior range. But if both the density and the widths scale with a factor 2
between the Narrow and Wide conditions (all else being equal), then the imprecision of
the encoding, as measured for instance by the standard deviation of estimates, should scale
by the same factor. Previous studies have shown, however, that this is not the case; instead,
the imprecision decreases sublinearly with the width of the prior, and thus participants are
relatively more precise with wider priors38,39. For this reason, we do not expect the widths
to double in size; if they do expand, we conjecture that it should be by a factor lower than 2.

Numerical population receptive fields
We now turn to the fMRI data to assess our hypotheses. We fit models of numerical
population receptive fields (nPRFs) to the single-trial BOLD responses per voxel at the time
of the presentation of the stimulus, specifically in the intraparietal sulcus (IPS; Fig. 2). The
region of interest (ROI) we focus on is the right numerical parietal cortex (rNPC) identified
as having the most pronounced number fields in several previous studies35,43,45–47 (Fig. 2a;
see Methods). Each nPRF model specifies a voxel’s average activity as a unimodal function
of the encoded number, parameterized by its preferred numerosity, its width, its baseline
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activity, and its amplitude (specifically, in line with previous results, we choose Gaussian
functions in logarithmic space; see Methods). We fit different nPRF models corresponding
to different hypotheses and we report the proportions of voxels in the ROI with positive
cross-validated variance explained (cvR2 > 0; nPRF parameters are only reported for
such ’signal’ voxels). We use cvR2 as a voxelwise model comparison technique because it
balances model flexibility and generalizability with minimal assumptions48. By evaluating
performance on held-out data, cvR2 automatically penalizes overfitting, ensuring that
improvements in fit from additional parameters generalize to unseen data. Conversely,
improvements in fit with fewer parameters suggests that the implied constraints are verified
in data.

Efficient shifts of the receptive fields
First, we look at the voxels’ preferred numerosities. Fixing all the other parameters, we
let the preferred numerosities of each voxel in the Narrow and Wide conditions be free
parameters, µn and µw (‘free-shift’ model). We start with this unconstrainedmodel to assess
whether the data support our hypothesis in general (below, we test our hypothesis with a
more constrained model). The preferred numerosities in the two conditions are strongly
correlated (participants pooled: r = 0.67, P < 10−320, N = 8008; across participants:
average r = 0.74, interquartile range (IQR): 0.63-0.88). Thus, the neural populations tuned
to larger numbers in the Narrow condition are also tuned to larger numbers in the Wide
condition. This supports our hypothesis that preferred numerosities maintain their relative
ordering across priors. Also as hypothesized, the maps of preferred numerosities in each
condition suggest that for a given voxel, the preferred numerosity in the Wide condition is
larger than that in the Narrow condition (as shown in Figure 2b for three representative
participants). Indeed, the relation between a voxel’s preferred numerosities across the two
conditions is not well described by the identity function, except for small numerosities;
most voxels with preferred numerosities above 10 in the Narrow condition shift to higher
preferred numerosities in the Wide condition (i.e., µw > µn; across-participant t-test that
the mean shift µw − µn is zero, for µn ≥ 10: t(38) = 4.73, P = 3 × 10−5; Fig. 3a,b). This
increase is observed in most participants: for 37 out of 39 participants, the across-voxels
median preferred numerosity is larger in the Wide condition than in the Narrow condition
(Fig. 3c; across-participants paired t-test of equality of the medians in the two conditions:
t(38) = 8.98, P = 6× 10−11). Overall, the preferred numerosities of 84% of voxels increase
in the Wide condition as compared to the Narrow condition (Fig. 3d).

The voxels’ locations across conditions are remarkably well described by the mechanism
of distributed range adaptation (compare Fig. 3a,b to Fig. 1e). The preferred numerosities
in the Wide vs. Narrow conditions are close to a line of slope 2, as hypothesized, when
the preferred numerosity in the Narrow condition is above 10 (we test for this specific
relationship with a constrained model, below). For example, voxels whose preferred
numerosities are close to 15 in the Narrow condition indeed exhibit preferred numerosities
on average close to 20 in the Wide condition (e.g., µw for voxels with µn ∈ [14.5, 15.5] is on
average 20.05; standard error of the mean (sem): 0.19). Moreover, we find that the identity
function indeed characterizes reasonably well the data when preferred numerosities are
below 10 (Fig. 3a,b). As for larger numbers, only 2.4% of voxels have preferred numerosities
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Fig. 3: Efficient shifts of neural receptive fields across priors. a, Distribution of the voxels’
pairs of best-fitting preferred-numerosity parameters (µn, µw) in the Wide vs. Narrow
conditions (participants pooled, ‘free-shift’ fMRI model). The distribution better aligns
with the efficient-shift prediction of distributed range adaptation (transparent pink line)
than with the identity function (dotted pink line). 1.94% of outlier voxels not shown (µn or
µw > 40). Inset: Same distribution, with the ‘participant-specific slopes’ model. b, Preferred
numerosities in the Wide vs. Narrow conditions for three representative participants (‘free-
shift’ model). Pink lines as in a. (caption continued on next page)
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Fig. 3: (cont.) c, Median preferred numerosities for each participant in the Narrow (left)
and Wide (right) conditions. A green (resp., red) line indicates that the participant’s
median preferred numerosity in the Wide condition is greater (resp., lower) than in the
Narrow condition. d, Empirical cumulative distribution of the difference between each
voxel’s preferred numerosities in the Wide and Narrow condition, µw − µn, for each partici-
pant (gray lines) and for the participants pooled (black line). For a majority of voxels this
difference is positive, i.e., most voxels’ receptive fields shift towards larger values in the
Wide condition. e, Distribution of the slope parameter across participants (‘participant-
specific slopes’ model). The slope parameter is distributed around 2, the value predicted by
distributed range adaptation. f,Across-participants average of the proportion of voxels with
positive cross-validated variance explained (cvR2 > 0) for (from left to right) the model
with no shifts in the voxels’ preferred numerosities, the model with free unrestricted shifts
(shown in a), the ‘efficent-shift’ model with a slope of 2 (predicted by distributed range
adaptation), and the model with participant-specific slopes (inset of a). The ‘efficient-shift’
model outperforms the other three. Error bars show ±1 standard error of the mean. ***:
P < 0.001, **: P < 0.01, *: P < 0.05.

greater than 25 in the Narrow condition; due to this scarcity of data, we do not investigate
additional assumptions for these voxels.

To test our hypothesis, we fit an ‘efficient-shift’ model which enforces the hypothesized
relationship between a voxel’s preferred numerosities in the two conditions (i.e., µw =
10+2(µn−10) if µn ≥ 10, otherwise µw = µn). We emphasize that this is a strong constraint
that considerably reduces the number of nPRFs parameters. It yields, however, a better
cross-validated fit than the unconstrained, ‘free-shift’ model considered thus far (with a
significant increase of the proportion of voxels with cvR2 > 0; across-participants paired t-
test of equality of the proportions: t(38) = 8.26, P = 5×10−10). It also fits significantly better
than a ‘no-shift’ model that enforces the identity constraint (µn = µw; Fig. 3f; t(38) = 3.63,
P = 8 × 10−4). Hence from one prior to the other, the preferred numerosities of the
encoding neural populations shift in a way that is quantitatively consistent with distributed
range adaptation. (We also fit alternative models in which µw is proportional to µn; they
do not yield better fits; see Supplementary Information.)

We also consider the possibility that different participants may adjust differently to
the distributions. Specifically, we fit a ‘participant-specific slopes’ model, similar to the
‘efficient-shift‘ model except that the slope is not fixed at 2: it is instead a free parameter
for each participant, which we denote by rµ (i.e., µw = 10 + rµ(µn − 10) if µn ≥ 10, else
µw = µn; see lower-right inset in Fig. 3a). We find that this slope parameter is distributed
(across participants) around 2 (median: 1.96, mean: 2.25, sem: 0.19; Fig. 3e), and the
mean best-fitting value is significantly different from 1 (t-test t(38) = 6.73, P = 5.7× 10−8),
but not from 2 (t(38) = 1.36, P = 0.18). Moreover, despite this model’s flexibility, it fits
significantly worse than the more constrained ‘efficient-shift‘ model whose slope is fixed at
2 (Fig. 3f; paired t-test t(38) = 2.59, P = 1.35× 10−2). In other words, assuming for all the
participants a slope of 2, i.e., the value implied by distributed range adaptation, yields a
better and more parsimonious account of the data.
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Wider receptive fields with the wider prior
We now turn to the widths of the receptive fields. We start from the ‘efficient-shift’ model
and let the widths of each voxel’s receptive field in the two conditions be free parameters,
σn and σw. The two widths are significantly correlated (participants pooled: r = 0.23,
P = 2 × 10−108, N = 8827; across participant: average r = 0.55, IQR: 0.31-0.89). For a
majority of participants (32 out of 39), the median width (across voxels) in the Wide
condition is larger than in the Narrow condition (paired t-test of equality: t(38) = 6.27,
P = 2× 10−7; Fig. 4c). Overall, the widths of 77% of voxels increase in the Wide condition
as compared to the Narrow condition (Fig. 4d).

Closer examination of the distribution of the two parameters suggests that the width in
the Wide condition is proportional to the width in the Narrow condition, with a scaling
factor greater than one (Fig. 4a,b). We thus fit a model in which for each participant a
scaling relationship is enforced between the widths of all the voxels in the two conditions,
i.e., σw = rσσn, where rσ is a participant-specific scaling parameter. We find that this
scaling parameter is significantly greater than 1 (t-test t(38) = 7.72, P = 2.7×10−9), and, as
conjectured, significantly lower than 2 (t(38) = 17.6, P = 7× 10−20). Its across-participant
average is 1.3 (also its median), and its standard deviation is 0.22 (Fig. 4e). This relatively
low dispersion suggests that the same underlying mechanism operates across participants,
prompting us to examine a ‘fixed scaling‘ model in which all the participants have the
same scaling factor (chosen equal to the median factor in the model just presented, i.e.,
rσ = 1.3). This yields a significantly better fit than with participant-specific scaling factors
(t(38) = 5.08, P = 10−5), with free width parameters for all the voxels across the two
conditions (t(38) = 10.5, P = 9× 10−13), or with equal widths across conditions (σn = σw;
t(38) = 5.06, P = 10−5; Fig. 4f). Thus, a better and more parsimonious account of the data
is obtained by assuming that from the Narrow to the Wide condition, the widths of the
receptive fields scale up by the same factor for all the participants.

This is our best-fitting model of the fMRI data. Consistent with our hypothesis of
distributed range adaptation, it is a highly constrained model, that enforces a linear re-
lationship with a specific slope, 2, between the preferred numerosities across conditions,
i.e., µw = 10 + 2(µn − 10), for µn ≥ 10, and a linear scaling of the receptive-field widths
across conditions, i.e., σw = rσσn, with rσ > 1. When examining the amplitudes, we find
no evidence that they change across conditions (see Supplementary Information).

Less precise neural coding with the wider prior
We show substantial changes in the tuning properties of numerosity-sensitive neural
populations in the right parietal cortex, across the two conditions (Figs. 2,3,4). Consistent
with our hypothesis, receptive fields in theWide condition aremore spread out and broader,
a pattern that we argue should reduce encoding precision, in a dynamic implementation
of efficient coding. We now test this more directly, by estimating the imprecision of the
neural code in the two conditions.

We derive a measure of the encoding precision from the parameters of our nPRF model,
combined with a noise component that we estimate by fitting a multivariate distribution to
the residuals of the model49 (see Methods). We estimate the encoding Fisher information50,
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a b
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Fig. 4: The receptive fields broaden under the wider range. a, Distribution of the vox-
els’ pairs of best-fitting widths parameters (σn, σw) in the Wide vs. Narrow conditions
(participants pooled, ‘free-widths’ model). The widths in the Wide condition are approxi-
mately proportional to those in the Wide condition, with a ratio greater than 1, indicating a
widening of the receptive fields (transparent pink line: ratio 1.3, dotted pink line: identity
function). 2.44% of outlier voxels not shown because one width is outside the figure range.
Inset: Same distribution, with the ‘participant-specific scaling’ model. b, Widths in the
Wide vs. Narrow conditions for three representative participants (‘free-widths’ model).
Pink lines as in a. (caption continued on next page)
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Fig. 4: (cont.) c, Median widths for each participant in the Narrow (left) and Wide (right)
conditions. A green (resp., red) line indicates that the participant’s median width in
the Wide condition is greater (resp., lower) than in the Narrow condition. d, Empirical
cumulative distribution of the difference between each voxel’s widths in the Wide and
Narrow condition, σw −σn, for each participant (gray lines) and for the participants pooled
(black line). For a majority of voxels this difference is positive, i.e., most voxels’ receptive
fields widen in the Wide condition. e, Distribution of the width-scaling parameter across
participants (‘participant-specific scaling’ model). f, Across-participants average of the
proportion of voxels with positive cross-validated variance explained (cvR2 > 0) for (from
left to right) the model with no change in the voxels’ widths parameters, the model with
free width parameters (shown in a), the ‘fixed width-scaling’ model, and the model with
participant-specific scalings (inset of a), all with the efficient-shift relation on the preferred
numerosities. The ‘fixed width-scaling’ model outperforms the other three. Error bars
show ±1 standard error of the mean. ***: P < 0.001.

a statistical measure of precision, for each participant and condition. We find that the
inverse of its square-root, 1/

√
I (a lower bound on the standard deviation of estimates),

is significantly larger in the Wide condition than in the Narrow condition (paired t-test:
t(38) = 6.53, P = 1 × 10−7; Fig. 5a, left panel), indicating reduced precision of neural
encoding in the Wide condition. We note, however, that the Fisher information measures
sensitivity to infinitesimal changes in the stimulus and is mostly relevant in the small-noise
regime of unbiased estimators of continuous quantities.

Thus, to better quantify the precision of the neural encoding, we adopt a simulation-
based approach by which we measure the expected variability of estimates decoded from
simulated neural activity. Specifically, we generate noisy neural responses from the en-
coding model and decode them into number estimates, by taking the posterior mean. We
obtain distributions of such simulated fMRI-derived numerosity estimates, by repeating
this procedure 20,000 times for each participant, numerosity, and condition (see also Meth-
ods). The mean absolute error of these simulated decoded estimates is significantly larger
in the Wide condition than in the Narrow condition (paired t-test: t(38) = 3.48, P = 0.0013;
Fig. 5a, right panel), consistent with the Fisher-information analysis above. Moreover, the
standard deviation of the fMRI-derived numerosity estimates as a function of the true
numerosities mirrors the pattern of participants’ behavioral variability (compare Fig. 5b to
Fig. 1b), with consistently higher variability in the Wide condition.

As a control analysis, we also decode neural responses from the Narrow condition
using the Wide prior. This manipulation only modestly increases the variability relative
to the Narrow prior, with the main difference being the absence of a boundary effect at
25 (Fig. 5b, dashed line). This result indicates that the increased variability in the Wide
condition is primarily driven by changes in neural encoding, rather than by the decoding
prior.
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Fig. 5: The neural-code imprecision correlates with the behavioral imprecision. a, Left:
fMRI-derived neural imprecision,measured as the inverse of the square-root of the encoding
Fisher information, for each participant in each condition. Right: Mean absolute error of
fMRI-derived estimates. In both cases, a green (resp., red) line indicates an increase of the
quantity (resp., a decrease) in the Wide condition. b, Standard deviation of fMRI-derived
numerosity estimates, based on the best-fitting nPRF encoding models in each condition,
and on the prior in each condition (solid lines), or on the Wide prior (dashed line), as
a function of the presented number. Shaded areas show the 95% confidence intervals.
c, Standard deviation of the numerosity estimates provided by the participants vs. derived
from fMRI data, in the Narrow (left) and Wide (right) conditions (in each panel, one point
corresponds to one participant). (caption continued on next page)
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Fig. 5: (cont.) d,e,f, Analysis of the change in imprecision across conditions: d, Across-
conditions difference in the standard deviation of estimates, as measured in the behavioral
data vs. as derived from the fMRI data. A larger increase in fMRI-derived response variabil-
ity correlates with a larger increase in behavioral response variability. e,f,Across-conditions
difference in the standard deviation of estimates as a function of the presented number, as
derived from the fMRI data (e) and from the behavioral data (f), for four participants that
show a diversity of adaptation profiles across numbers. The four participants are shown
in d with matching colors. g,h,i, Analysis of the imprecision varying across numbers:
g, Parameter ω governing each participant’s degree of compression across numbers in the
Wide condition (see regression), estimated from the behavioral data vs. from the fMRI
data. h,i, Response variance (log scale) as a function of the presented number (solid lines),
as derived from the fMRI data (h) and from the behavioral data (i), for four participants
that show a diversity of compression across numbers, and corresponding regression lines
(dashed lines). The four participants are shown in gwith matching colors. Individual data
in e,f,h,i were smoothed with Gaussian kernels of widths 0.2 (e,g; log scale) and 3 (h,i) to
emphasize trend. Panels d,g omit one outlier with abscissa value 4.7 standard deviations
or more away from group mean. ***: P < 0.001, **: P < 0.01, *: P < 0.05.

Changes in neural coding correlate with changes in behavioral variability
The fMRI data suggest decreased precision of the neural representations of numbers in the
Wide condition (Fig. 5a,b), and the behavioral data exhibit an increase in the participants’
response variability (Fig. 1b). Both findings are consistent with dynamic efficient coding,
i.e., a reallocation of representational resources when the range widens, leading to less
precise encoding. If the behavioral variability proceeds from the imprecision in neural
encoding, then one would expect that these two quantities, and their changes across
priors, should be correlated. We thus examine whether the statistics of the fMRI-derived
numerosity estimates correlate with those of the participants’ estimates.

Prior studies have shown that participants with less precise tuning in right IPS are
more imprecise in binary choices involving numbers45,46,51. Consistent with these findings
(but here with an estimation task), we find that the standard deviations of behavioral
estimates and of fMRI-derived estimates are significantly correlated across participants,
in both conditions (Narrow: Pearson’s r = 0.48, P = 0.0022, N = 39; Wide: r = 0.33,
P = 0.038, N = 39; Fig. 5c). In short, less precise neural encoding correlates with less
precise behavioral responses.

Turning to the question of adaptation, i.e., to the change in encoding across conditions,
we first note that participants exhibit individual differences in the degree to which their
neural encoding precision adjusts across priors. To capture these differences, we fit a
‘participant-specific-slope-and-scaling’ model with two parameters: a slope parameter, rµ,
governing shifts in preferred numerosities (i.e., µw = 10+ rµ(µn− 10) if µn ≥ 10, otherwise
µw = µn), and a width-scaling parameter, rσ, characterizing changes in tuning width (i.e.,
σw = rσσn). With this model, we ask whether individual variations in neural adaptation
correlate with individual variations in behavioral adaptation. We thus examine the differ-
ence across conditions of the standard deviation of responses (StdDevWide− StdDevNarrow).
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The difference computed with the behavioral estimates is significantly correlated with
the difference computed with the fMRI-derived estimates (Fig. 5d; Pearson’s r = 0.35,
P = 0.033, N = 38, excluding one outlier whose behavioral difference is 5 standard de-
viations from the group mean; including the outlier: Spearman’s r = 0.34, P = 0.036,
N = 39). Thus, participants whose neural populations show larger losses of precision with
the Wide prior also show greater increases in behavioral variability. Figure 5e,f illustrates
for four representative participants how the behavioral changes in variability parallels
the fMRI-derived changes in variability. This close link between shifts in neural coding
and behavioral noise is again consistent with our hypothesis that the dynamic shifting of
numerosity tuning functions implements dynamic efficient coding.

Neural and behavioral imprecision across numbers
Finally, participants also differ in how their precision varies across numbers. Number
representations are roughly consistent with a logarithmic compression, but there are
individual variations52,53. Our data allow us to test whether such individual differences
are reflected in parietal tuning profiles. We quantify the compression in both neural and
behavioral data by fitting a power law relating response variance (Var) and numerosity (n),
as log Var = ω log n+ c. This relationship, which can be understood as a generalization of
Weber’s law (obtained with ω = 2), provides good fits to both behavioral (mean R2 = 0.57,
IQR: 0.50-0.68) and fMRI-derived estimates (mean R2 = 0.47, IQR: 0.21-0.74). Here we
focus our analysis on theWide condition, as it encompasses a broader range of numerosities.

Behavioral and neural estimates of ω are significantly correlated (Fig. 5g; Pearson’s
r = 0.49, P = 0.0018, N = 38, excluding one outlier whose behavioral ω is 4.7 standard
deviations from the group mean; including the outlier: Spearman’s r = 0.40, P = 0.011,
N = 39). Thus, participants whose neural populations show steeper increases in encoding
imprecision across numerosities also exhibit stronger behavioral compression (Fig. 5h,i).

Discussion
Efficient coding is a well-established principle in low-level sensory systems, and behavioral
studies suggest that it underlies the representation of numerosity and subjective value38–41,54.
Yet it remains unclearwhether and how this principle is dynamically implemented by neural
populations, including for the encoding of abstract magnitudes used for decision making.
Here we show that numerosity-sensitive populations in human parietal cortex adapt
their tuning to the contextual statistics of numerical stimuli. Consistent with a dynamic
implementation of efficient coding, the encoding precision decreases under the wider prior.
The observed adjustments in preferred numerosities and receptive-field widths follow a
predictable pattern, supporting the proposal of distributed range adaptation, whereby
populations encode stable quantiles across contexts. Moreover, individual differences
in these neural adjustments correlate with individual differences in response variability,
suggesting that the observed neural activity underlies behavior. In short, the scaling of the
prior prompts the scaling of the neural encoding, which in turn underlies the scaling of the
behavioral variability.
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Our study extends efficient coding in several ways. First, we show in neural data
that it applies beyond the perception of physical quantities to abstract magnitudes such as
numerosity. Secondwe show, consistentwith proposals based on behavioral data38–41,54, that
it is a dynamic process which flexibly adapts (on the timescale of a one-hour experiment)
to changing statistical contexts. Third, we uncover a neural mechanism, distributed range
adaptation, through which tuning properties adjust to optimize encoding for the input
distribution.

Distributed range adaptation entails a quantitative prediction about the specific shifts
of the neural populations’ preferred numerosities across priors (Eq. 1). In modeling
population receptive fields, this theoretical constraint greatly reduces the flexibility of a
model, but yields amore robust fit thanwhen unconstrained (as evidenced by the increased
cross-validated variance explained). Thus, the hypothesized constraint in fact captures
a structuring property of the neural data. Similarly, the receptive-fields widths are well
captured by a scaling relation, whereby the wider prior results in wider receptive fields.
The best account of the data is obtained by assuming that all the participants shift their
preferred numerosities by the same factor, and scale their receptive-field widths by the
same factor. This homogeneity further substantiates our conclusions and suggests that
distributed range adaptation is a standard computational mechanism that structures how
sensory networks reorganize in adaptation to changing contexts.

Individual variations nevertheless remain, and enable us to tie participants’ behavior to
their neural activity. Our results support, but also go beyond, the finding that participants
with less precise neural encoding are also less precise in behavior45,46,51. We show that a
participant who adjusts their neural tuning to a greater extent across priors than the average
participant also exhibits larger changes in behavioral variability. Similarly, participants
whose neural encoding suggests a stronger compression of larger numbers also exhibit
stronger diminishing sensitivity for larger numerosities, supporting the hypothesis that
Weber’s law originates in the tuning properties of parietal neurons7. In other words,
whether we look at variations across conditions or variations across numbers, we find that
the precision of the neural encoding correlates with the precision of the behavior.

Across priors, the widths of the receptive fields scale by a factor smaller than that
applied to the prior (1.3 vs. 2), as conjectured. This implies that, relative to the size of the
prior, the specificity of the encoding populations is higher with the Wide prior. This is
consistent with a recent efficient-coding model of endogenous precision, which predicts
that wider priors should result in lower absolute precision but higher relative precision, so
as to mitigate the larger errors incurred under the wider priors38.

Our findings were made possible by a combination of methodological choices: we
study a relatively large sample of participants (39; with two sessions each), performing an
estimation task instead of a (more typical) binary-choice task, and we make extensive use
of advanced encoding models of fMRI data, namely, numerical population receptive fields
models, to formally quantify the acuity of the neural code. This enables us to effectively test
the neural data against targeted hypotheses, and to measure with precision the attributes
of the neural substrates that support human representations.

In rats, a pattern similar to distributed range adaptation has been observed in the
representation of elapsed time in striatal and hippocampal populations25,26, suggesting
that it may be a canonical property of sensory networks. The notion of distributed range
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adaptation moreover seems to partially extend to the encoding of spatial location. When a
rat’s environment is expanded, about 36% of its recorded hippocampal place cells exhibit
a corresponding rescaling of the locations of their receptive fields, such that they code
for the same relative position across environments, consistent with a 2D extension of our
results55,56. Notably, the areas of the receptive fields of these place cells increase with the
area of the environment, but they scale by a ratio smaller than the scaling factor applied to
the environment55, analogous to our results regarding the receptive-fields widths. This
similarity in findings across species and neural areas suggests a similar strategy of increased
relative precision to mitigate larger errors in larger spaces.

Distributed range adaptation requires encoding populations to update their tuning
properties, and to do so in a mutually consistent manner, to maintain a coherent collective
code. Behavioral evidence suggests that this adaptation may occur relatively fast (on the
order of a second39). Changes in neuronal tuning could be implemented via synaptic
reweighting57,58, or via gain adaptation in a recurrent network39,59. Network updates could
be driven by top-down modulatory signals, or by local learning rules implementing quan-
tile regression60, as in recent models of distributional reinforcement learning61,62. Thus,
while our work establishes that the neural code for number flexibly and efficiently adapts
to context, future studies using electrophysiological recordings33, neuromodulatory inter-
ventions63, or layer-specific neuroimaging64 should further adjudicate which mechanisms
drive this adaptation. These approaches may clarify potential dysfunction in clinical con-
ditions—such as gambling disorder—where distorted magnitude representations may
contribute to maladaptive decision-making65.
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Methods

Task and participants
Thirty-nine healthy participants (13 females, aged 18-34, mean age 23.1) participated in the
experiment. Participants were provided information about the objective of the study, the
equipment used, the data recorded, the task, as well as the payoff mechanism. Participants
were screened for MR compatibility. No participant showed indications of psychiatric
or neurological disorders or needed visual correction. The experiment conformed to the
Declaration of Helsinki and was approved by the Canton of Zurich’s Ethics Committee.
All the participants provided their written consent after being presented with the relevant
information.

Each participant completed two experimental sessions, each lasting approximately one
hour, with an additional 45 minutes for preparatory procedures such as changing into
scanning attire and scanner setup. Each session included two blocks corresponding to the
Narrow and Wide conditions, presented in pseudo-random, counterbalanced order.
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Each block started with a learning phase (15 trials). In each trial of this phase, the
participant was shown a stimulus together with its objective numerosity, represented by
an Arabic numeral. The participant could progress from one trial to the next at their own
pace, and no further response was asked of them in this phase.

The learning phase was followed by the feedback phase (30 trials), during which partici-
pants estimated the numerosity of the presented stimulus and received feedback on the
ground truth numerosity after each response. Each trial began with a green fixation cross
(300 ms), followed by a red fixation cross (300 ms), both presented on a gray background.
The stimulus array then appeared for 600 ms, consisting of 10–40 white dots (0.1◦ visual
angle) within a 2.5◦ circular aperture. Both the aperture and background shared the same
gray color, thus its edges were not directly visible. Immediately after the presentation
of the stimulus array, a slider appeared, scaled proportionally to the current prior range.
Participants used an MRI-compatible trackball to indicate their perceived numerosity, with
no time limit for their response. After response submission, the correct numerosity was
displayed as feedback for 500 ms. The learning and feedback phases aimed to familiarize
participants with the stimuli and the prior distribution of the current condition.

After the learning and feedback phases, participants performed themain task (see Fig. 1a).
Each trial in the main task started with a green fixation cross (300 ms), followed by a red
fixation cross (300 ms), and then the stimulus array, which was presented for 600 ms.
Crucially, a variable delay of 4, 5, or 6 seconds (randomly selected) followed the stimulus
array, during which only a white fixation cross was displayed. This temporal separation
ensured that stimulus-related BOLD activity was not contaminated by decision-making
and motor response-related BOLD activity61–63. In the main task, participants were given
three seconds to provide their estimate. Each block of the main task comprised 120 trials
(4 runs of 30 trials). Thus, each session included 240 trials, and a total of 480 trials were
collected per participant (240 trials per condition).

At the end of the experiment, participants received a reward consisting of a participation
fee (30 CHF/hour) plus a performance bonus. The performance bonus was calculated
based on estimate accuracy: for each trial, an amount equal to CHF 0.07 −(x̂ − x)2/600
was added to the bonus, where x̂ is the participant’s estimate and x is the ground truth
numerosity. Trials from both the main task and the feedback-phase contributed to the
performance bonus. Late responses incurred a penalty of CHF 0.10 per trial, deducted
from the bonus. All participants earned a positive performance bonus, with an average of
CHF 29.77 (sd: CHF 6.00) across the two sessions (CHF 1 ≈ USD 1.25 at current exchange
rates).

MRI data acquisition
We acquired structural and functional MRI data using a Philips (Best, the Netherlands)
Achieva 3T whole-body MR scanner equipped with a 32-channel MR head coil, located
at the Laboratory for Social and Neural Systems Research (SNS-Lab) of the UZH Zurich
Center for Neuroeconomics. In both sessions, we collected 8 runs of fMRI data with a
T2*-weighted gradient-recalled echo-planar imaging (GR-EPI) sequence (132 volumes + 5
dummies; flip angle 90 degrees; TR = 2286 ms, TE = 30ms; matrix size 96 × 70, FOV 240 ×
175mm; in-plane resolution of 2.5 mm; 39 slices with thickness of 2.5 mm and a slice gap of
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0.5mm; SENSE acceleration in phase-encoding direction (left-right) with factor 1.5; time-
of-acquisition 5:02 minutes). At the beginning of each session, we acquired high-resolution
T1-weighted 3D MPRAGE image (FOV: 256 × 256 × 170 mm; resolution 1 mm isotropic;
Shot TR = 2800 ms; TI = 1098.6 ms; 256 shots, flip angle 8 degrees; TR = 8.3 ms; TE = 3.9
ms; SENSE acceleration in left-right direction 2; time-of-acquisition 5:35 minutes), while
participants performed the learning and feedback phases.

MRI preprocessing
Preprocessing of fMRI data was performed using fMRIPrep 23.2.164,65, which is based on
Nipype 1.8.666,67.

Preprocessing of B0 inhomogeneity mappings

A B0-nonuniformity map (or fieldmap) was estimated based on two or more echo-planar
imaging (EPI) references using topup68 (FSL).

Anatomical data preprocessing

EachT1w imagewas corrected for intensity non-uniformity (INU)using N4BiasFieldCorrection69,
distributed with ANTs 2.5.0. The T1w reference was then skull-stripped using a Nipype
implementation of the antsBrainExtraction.shworkflow (ANTs), with OASIS30ANTs
as the target template. Brain tissue segmentation of cerebrospinal fluid (CSF), white matter
(WM), and gray matter (GM) was performed on the brain-extracted T1w using fast70

(FSL). An anatomical T1w-reference map was computed after registration of the 4 INU-
corrected T1w images using mri_robust_template71 (FreeSurfer 7.3.2). Brain surfaces
were reconstructed using recon-all72 (FreeSurfer 7.3.2). The brain mask estimated pre-
viously was refined using a custom variation of the method to reconcile ANTs-derived
and FreeSurfer-derived segmentations of the cortical gray matter73. Volume-based spatial
normalization to the MNI152NLin2009cAsym standard space was performed through non-
linear registration with antsRegistration (ANTs 2.5.0), using brain-extracted versions of
both the T1w reference and the T1w template. The following template was selected for
spatial normalization and accessed via TemplateFlow74 (version 23.1.0): ICBM 152 Nonlinear
Asymmetrical template version 2009c75 (TemplateFlow ID: MNI152NLin2009cAsym).

Functional data preprocessing

For each of the 16 BOLD runs per participant (across all tasks and sessions), the follow-
ing preprocessing steps were performed. First, a reference volume was generated using
a custom fMRIPrep methodology for head-motion correction. Head-motion parameters
(transformation matrices and six corresponding rotation and translation parameters) were
estimated with respect to the BOLD reference using mcflirt76 (FSL), prior to any spa-
tiotemporal filtering. The estimated fieldmapwas aligned to the target EPI reference run
using rigid registration, and the field coefficients were mapped onto the reference EPI.
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TheBOLD referencewas co-registered to the T1w reference using bbregister (FreeSurfer),
which implements boundary-based registration77. Co-registration was configured with
six degrees of freedom. Several confounding time series were calculated based on the
preprocessed BOLD data: framewise displacement (FD), DVARS, and three region-wise
global signals (CSF, WM, and whole-brain). FD was computed using two formulations:
absolute sum of relative motions78 and relative root mean square displacement between
affines76. FD and DVARS were calculated for each functional run using their Nipype im-
plementations78. Many internal operations in fMRIPrep use Nilearn 0.10.279. For further
details, see the fMRIPrep workflow documentation.

fMRI analysis
The key aim of our fMRI analyses was to estimate the nonlinear tuning of neuronal popu-
lations in the parietal cortex to numerosity, and how this tuning was shaped by different
task contexts (i.e., priors), following established approaches61–63,80. After preprocessing,
the analysis proceeded in three phases:

1. Estimating voxelwise BOLD responses for every trial using a single-trial GLM.

2. Fitting a large set of numerical population receptive field (nPRF) models, differing in
complexity and scientific assumptions, and comparing them using cross-validated
R2.

3. Using statistical measures to quantify the information about numerosity contained in
parietal activity, and how this varied with task context and numerosity.

These phases will be described in detail in the following sections.

Single-trial BOLD response estimation

We used the GLMSingle Python package81 to estimate single-trial BOLD response ampli-
tudes. This package employs cross-validation to optimize a generalized linear model
(GLM) by selecting: 1) the most suitable hemodynamic response function from a prede-
fined library, 2) the optimal L2-regularization parameter to mitigate the effects of correlated
single-trial regressors, and 3) GLMDenoise regressors82, derived from the first n principal
components of noise voxels (defined as voxels with low explained variance in the task-based
GLM). The number of principal components was determined via cross-validation.

To construct the design matrix for GLMSingle, we modeled the onsets of both (1) the
stimulus arrays of different numerosities and (2) the response periods. Trials were cate-
gorized for cross-validation as either stimulus trials (e.g., stimulus_10) or response trials
(e.g., response_11 or no_response). Based on extensive pilot analyses, as well as earlier
studies62,63, we chose not to include additional confound regressors (e.g., motion parame-
ters, RETROICOR, or aCompCor) beyond those provided by GLMDenoise. This decision
follows prior work showing that additional regressors often correlate with those derived
by GLMDenoise and typically do not further improve decoding accuracy; in fact, they can
sometimes reduce it by introducing overfitting62,81,82.
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nPRF estimation
To estimate nPRF parameters and test our hypotheses , we fitted a number of numerical
population receptive field (nPRF) models. These models only differed in the extent to
which parameters were (a) constant over conditions (b) completely free between conditions
or (c) a linear function of each other (e.g., µw = 10 + β(µn − 10)), where β could either be
fixed or estimated. All nPRF models describes the average responses of a voxel to different
numerosities as a function of the number x, as follows:

f(x) = b+ a exp

(
−(log x− log µ)2

2σ2

)
, (3)

where b is the baseline, a the amplitude, µ the voxel’s preferred numerosity, and σ the
width parameter of the receptive field.

The nPRFmodel fitting startedwith a grid search, making relative activation predictions
for each trial using 41 possible preferred numerosities (5-41) and 30 possible width (2-30
in natural space). For each voxel, the parameters corresponding to the predicted activation
profile with the highest correlation with the actual activation profile was chosen, after
which the amplitude and baseline parameters were estimated using ordinary least-squares
(OLS). After this initial step, parameters were further optimized using the ADAM gradi-
ent descent optimisation algorithm83, as implemented in Tensorflow84, with the negative
relative explained variance (R2) as a cost function.

Some of the models we used put ‘hierarchical‘ constraints on the parameters using
scaling parameters β. For example, the preferred numerosity of a voxel in the Wide
condition was a linear function of the numerosity in the Narrow condition with a slope
parameter that is estimated but kept constant across voxels. For these models, the grid
search was performed on all voxels, and the mean slope was used as a starting point for
the gradient descent optimization.

The nPRF model was fitted both to all voxels within the brain (for visualization pur-
poses), or specifically to voxels in the right NPC. The right NPC mask was taken directly
from Barretto-García et al.61. In the case of models with hierarchical parameters, this latter
approach was necessary, since we did not want voxels outside of the ROI to influence the
slope parmameter β.

For all models, we fitted both a version of the model in which the average BOLD activity
is a function of the actual ground-truth numerosity at each trial, and a version in which the
BOLD response would be a function of the response provided by the participant. The variants
that uses the responses generally yielded a higher proportion of variance explained cvR2

(see Supplementary Information). Thus we use these models for the analyses of the voxels’
tuning (Figs. 3,4). However, when we related the relative acuity of the neural responses
to behavioral differences (Fig. 5), we resorted to the models fitted on the ground-truth
numerosities. We did so tomake sure the fMRI noise estimates and the behavioral responses
were statistically completely independent, and avoid ‘double-dipping’.

To identify voxels with reliable numerosity-tuned responses and to facilitate model
comparison, we employed an 8-fold cross-validation procedure. For each participant
and model, we generated eight distinct train–test splits by iteratively leaving out the nth
run from both the first and second sessions. This ensured equal representation of the
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Narrow and Wide conditions in both the training set (210 out of 420 trials each) and the
test set (30 out of 60 trials each). The nPRF model was fitted to the training data, and
its performance was evaluated using the explained variance (R2) on the held-out test
trials, yielding a cross-validated R2 (cvR2). This procedure enabled us to identify voxels
with robust and generalizable numerosity tuning while excluding unreliable or noisy
responses85. Throughout the manuscript, analyses of pRF parameters are restricted to
voxels with an average cvR2 across test runs greater than 0.0.

For model selection at the voxel level, we compared cross-validated explained variance
(cvR2) across candidate models. For each voxel, the model with the highest average
cvR2 across folds was designated as the best-fitting model. Because cvR2 is evaluated
on independent test data, it penalizes overly complex models that overfit noise in the
training set. This makes cvR2 a principled criterion for voxel-wise model comparison, as it
favors models that capture reliable neural response mechanisms rather than spurious or
idiosyncratic patterns.

For model selection across voxels (e.g., Fig. 3f), we used the proportion of voxels with
cvR2 > 0.0. This approach was motivated by the observation that, in noise voxels, nPRF
models tend to overfit and can performmuchworse than a simple intercept model, yielding
very negative (average) cvR2 values. Consequently, the distribution of cvR2 across voxels
is highly variable with a heavy negative tail. Using the proportion of voxels with positive
cvR2 provides a more stable and interpretable summary measure for model comparison at
the population level.

For visualization, voxelwise nPRF parameters were projected onto the cortical surface
using the FreeSurfer surfaces generated by fMRIPrep. In particular, we visualized the
preferred numerosity of individual vertices. To sample voxelwise pRF parameters onto the
surface, we used Nilearn’s vol_to_surf function79. Vertices without reliable numerosity
tuning were excluded using the cvR2 > 0.0 mask.

All nPRF analyses were implemented using the braincoder package86, which provides
flexible tools for specifying encoding models and estimating them with a GPU-accelerated
TensorFlow backend.

fMRI-derived Fisher information

To quantify differences in the acuity with which right NPC represents numerosity across
participants, conditions, and numerosities, we used the statistical measure of Fisher Infor-
mation87. Fisher Information quantifies the sensitivity of a likelihood function to changes in
a parameter θ (in our case, numerosity n), and is defined as

I(n) = E

[(
∂

∂n
log p(y | n)

)2
]
, (4)

where p(y | n) denotes the likelihood of observing a BOLD activation pattern y given
numerosity n, and the expectation is taken with respect to p(y | n). The inverse of the Fisher
Information provides a lower bound on the variance of any unbiased decoder of n (the
Cramér–Rao bound). Thus, higher Fisher Information implies greater representational
acuity and more precise decoding of numerosity.
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Thus, our first step was to define a likelihood function p(y | n), following the approach
used in our earlier work on decoding numerosities61–63. The crucial step was to extend the
deterministic nPRF model,

y = f(n; θ), (5)
where θ = {µ, σ,A, b} denotes the preferred numerosity, tuning width, response amplitude,
and baseline. This formulation predicts a fixed response pattern for each numerosity, but
does not capture trial-to-trial variability in BOLD responses. We therefore extended it into
a stochastic model,

y = f(n; θ) + ϵ, ϵ ∼ N (0,Σ), (6)
with the noise term ϵ accounting for variability in the observed responses.

We estimated Σ by fitting a multivariate normal distribution to the residuals of the best-
fitting nPRF model61–63, using only signal voxels with cvR2 > 0. While relative covariance
in noise across voxels is critical for decoding uncertainty88, reliable estimation is extremely
challenging in a low-n regime (480 trials) with hundreds of voxels89. Although regularized
approaches have been proposed88, in our initial analyses these performed worse than
assuming diagonal (i.e., uncorrelated) noise. In particular, the decoded posteriors were
excessively broad and their decoding performance was worse than a model assuming
diagonal noise.

Importantly, our aim here was not to decode trial-by-trial uncertainty (as in88 and62),
but rather to assess how the acuity of numerosity representations varied across participants
and conditions. For this purpose, we thus adopted a diagonal covariance matrix, assuming
no correlations between voxels. Note that these analyses therefore specifically targeted the
effects of the preferred numerosity and width of numerical pRFs, rather than their noise co-
variance structure. Notably, preliminary analyses revealed no evidence that noise patterns
differed between the Narrow and Wide conditions.

We computed Fisher Information for arbitrary neural encoding models using the
braincoder package86. Since the expectation in Equation 4 cannot readily be expressed
in closed form for our models, we evaluated it numerically by sampling from the noise
distribution p(y | n). For each sample, we computed the derivative of the log-likelihood
with respect to numerosity,

∂

∂n
log p(y | n),

using automatic differentiation. Squaring this term and averaging across samples yields a
Monte Carlo estimate of Fisher Information. In practice, we drew 1000 samples for each n,
providing a stable numerical evaluation of representational acuity at that numerosity. This
procedure yielded an estimate of Fisher Information for each numerosity n, separately for
each participant and condition. These values quantify the acuity of the neural representa-
tion at different numerosities. We then used these measures to assess how manipulating
the objective prior in the experiment altered the fidelity with which right NPC encoded
numerosity across participants and conditions.
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Expected Variability from an Ideal Bayesian Decoder

Fisher Information is a purely local measure: it reflects sensitivity to infinitesimal changes
around a given n, but does not account for the discrete nature of number, boundary effects,
or the impact of substantial noise90. Indeed, in our data, Fisher Information failed to
capture the increased precision at the edges of the tested numerosity range. To obtain a
more realistic estimate of the expected variability of an actual neural decoder, we therefore
complemented the Fisher Information analysis with simulations of an ideal Bayesian
decoder. This approach allowed us to approximate the performance of a perfect decoder
given the observed neural code, providing a more global measure of representational
acuity.

We modeled voxel responses as a multivariate Gaussian distribution,

y ∼ N (f(n; θ),Σ),

with mean given by the predicted nPRF responses f(n; θ) and covariance Σ estimated from
the residuals of the best-fitting model. Using this generative model, we simulated large
numbers of single-trial response patterns for each numerosity under both the Narrow and
Wide stimulus ranges. For each simulated response y, we computed the Bayesian posterior
over numerosities, p(n | y), and decoded the stimulus as the posterior mean,

n̂ = E[n | y].

Repeating this procedure many times yielded distributions of decoded numerosities for
each true numerosity, from which we quantified variability, systematic bias, and absolute
error. By correlating the variability of numerosities decoded from simulated data with the
variability observed in participants’ responses, we were able to test whether the precision
of neural representations in right NPC correlates with the precision of behavior.

Statistical analysis of the behavioral data
Figure 1b shows posterior mean estimates of the group-level parameters from a hierarchical
model that includes participant-level random effects. For each condition, the model is
defined by the following equations, where x̂si denotes the estimate of participant s in trial
i, while xi denotes the correct number:

x̂si | xi ∼ N
(
ms(xi), σs(xi)

2
)

ms(x) ∼ N
(
m0(x), τ

2
)
,

lnσs(x) ∼ N
(
lnσ0(x), ν

2
)
,

(7)

with the priors
m0(x) ∼ N

(
x, 102

)
,

σ0(x) ∼ N+

(
3.5, 3.52

)
τ ∼ N+

(
2, 52

)
,

and ν ∼ N+

(
1, 22

)
,

(8)
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where N+ is the Gaussian distribution truncated to the positive numbers. This model was
estimated using Stan91 (10 chains of 1000 samples each, following 1000 warmup iterations,
with the HMC-NUTS sampler). The shaded areas in Figure 1b show the 5th and 95th
percentile of the posterior.

Analysis code and data
All analysis code is available onGitHub at https://github.com/Gilles86/neural_priors.
The fMRI data will be made publicly accessible on OpenNeuro. Meanwhile, requests can
be addressed to the authors.
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