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Abstract

Risk preferences – the willingness to accept greater uncertainty to achieve larger potential

rewards – determine many aspects of our lives and are often interpreted as an individual

trait that reflects a general 'taste' for risk. However, this perspective cannot explain why risk

preferences can change considerably across contexts and even across repetitions of the

identical decisions. Here we provide modelling and neural evidence that contextual shifts

and moment-to-moment fluctuations in risk preferences can emerge mechanistically from

Bayesian inference on noisy magnitude representations in parietal cortex. Our participants

underwent fMRI while choosing between safe and risky options that were either held in

working memory or present on the screen. Risky options that were held in working memory

were less likely to be chosen (risk aversion) when they had large payoffs but more likely to

be chosen (risk-seeking) when they had small payoffs. These counterintuitive effects are

mechanistically explained by a computational model of the Bayesian inference underlying

the perception of the payoff magnitudes: Options kept in working memory are noisier and

therefore more prone to central tendency biases, leading small (or large) payoffs to be

overestimated (or underestimated) more. Congruent with the behavioural modelling, fMRI

population-receptive field modelling showed that on trials where intraparietal payoff

representations were noisier, choices were also less consistent and less risk-neutral, in line

with participants resorting more to their prior belief about potential payoffs. Our results

highlight that individual risk preferences and their puzzling changes across contexts and

choice repetitions are mechanistically rooted in perceptual inference on noisy parietal
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magnitude representations, with profound implications for economic, psychological, and

neuroscience theories of risky behaviour.
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Introduction

A central pillar of decision theory is that people make different choices because they have

different underlying preferences. For example, some might take more risks for the chance of

bigger rewards, whereas others might not1–9. In real life, this might mean that some people

are more willing than others to become self-employed, engage in relationships, or to invest

money in the stock market10. Classic choice theories explain such individual differences as

varying preferences for larger over smaller gains that are described by characteristics of

individual utility functions3,4,11. According to this view, preferences reflect the extent to which

a decision-maker favors choice options over others based on their subjective evaluation of

risk and reward. This concept of (risk) preferences is used throughout many scientific fields,

including household economics12, consumer behaviour13, game theory3, health

economics14, environmental economics15, finance16, social decision-making17,

macroeconomics18,19, and psychology9,20. Furthermore, the field of neuroeconomics, which

studies the neural underpinnings of economic behaviour, often takes this perspective of

preferences as a starting point for analyzing neural data, e.g., by looking for neural

correlates of subjective value that guide observed choices under uncertainty21–23.

Although some theorists24 distinguish between risk preferences (defined by observed

choice in a given choice set) and risk attitudes (a broader psychological trait that describes

a person's general appetite or distaste for taking risks), many standard decision theories

equate risk preferences with attitudes, because the former are mathematically tractable.

Moreover, they assume that such preferences are stable over time2,13 and largely similar

across people: “[O]ne does not argue about tastes for the same reason that one does not

argue over the Rocky Mountains—both are there, will be there next year, too”2. Accordingly,

most economic theories say very little about where risk preferences come from or why they

are the way they are.

However, empirical data reveal that risk preferences are, unlike the Rocky Mountains, highly

variable25,26. First of all, they seem to depend on context. For example, objectively identical

choice sets (i.e., accept/reject a certain gamble) can lead to different choices depending on

the options that were offered before27 or in which order choice options are presented28.

Moreover, it is routinely found that even when the exact same choice problem is presented

repeatedly throughout an experiment within the same context, participants still choose

differently across repetitions7,29,30. Such choice stochasticity has been addressed in random

utility theory (RUT) by adding a random noise term to classic utility functions31,32. However,
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although RUT alleviates the problem of choice inconsistency, it ultimately fails to address

the question of where this noise originates from, or why risk preferences can change with

context. The central problem with this perspective is that noise in observed behaviour is

often conceptualized as being completely independent from the decision-making processes

that guide choice. This stands in stark contrast to many findings within the field of

perceptual decision neuroscience showing that the amount of randomness in observed

decisions is usually tightly linked to the amount of bias in perception33–39.

Based on this rich body of work in perceptual neuroscience, we argue here that (at least

parts of the) contextual variability and stochasticity in revealed risk preferences might stem

from the neurocognitive perceptual processes that precede subjective valuation. Human

decision-makers cannot directly observe the objective variables that should determine their

choice (i.e., probabilities and potential payoffs). Rather, they must rely on noisy and biased

percepts of these variables, stored in neural representations of the sensory input. Therefore,

their decisions should be highly sensitive to how information is presented, in ways that

should be predictable based on a mechanistic understanding of the involved perceptual

processes29.

This general idea - that perceptual biases may play a role in economic choice - is by no

means new. Seminal theories in behavioural economics and economic psychology have

long suggested that human decision-makers decide as if their perception of the relevant

variables was distorted4,40–42. However, these classical models treat these distortions as a

given and take no stance on where they come from and what determines their shape and

strength. For example, the parameters of prospect theory4 merely describe the over- and

underweighting of probabilities but give no further explanation for their origins. This

precludes such theories from explaining, let alone predicting, how different contexts

modulate choice.

Notably, this agnostic stance towards perceptual distortions of choice-relevant variables

has changed in recent years, with a new wave of models of economic choice attributing

classic aspects of risk preferences, such as risk and loss aversion, to noisy and biased

perception43–46. Crucially, these models incorporate theories from psychophysics to

describe decisions as a fully rational solution to an optimisation problem that is based on

inherently noisy representations of the choice-relevant information. To take optimal choices,

our brain makes the best of these noisy signals by applying principles of Bayesian

inference37,47 and/or efficient coding39,48, which can lead to biases in individual percepts but
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is nevertheless beneficial because it reduces the average error in payoff estimation. For

example, there is a well-known positive correlation between noise levels and central

tendency (CT) bias49: With increased noise, participants tend to regress their percepts of

stimulus values towards the mean value of earlier observed stimuli. The Bayesian

interpretation of this is that participants increasingly revert to their prior beliefs about

possible stimulus values when noise gets larger29,37. This CT bias might explain substantial

parts of risk aversion43: Risk-averse individuals might not actually have concave utility

functions but may in fact try to maximize expected values. However, they simply perceive

the larger monetary amounts that come with risky prospects as less substantial than they

actually are (and vice versa for safe prospects).

We have recently provided initial neuroscientific evidence for this claim, by showing that

there is a strong link between the noisiness of people's neurocognitive magnitude

representations in parietal cortex during perceptual judgments and the amount of risk

aversion people exhibit in separate economic choices50. This initial demonstration now

makes it possible to address important questions about the neurocognitive origins of risk

preferences. First, what determines whether individuals show categorically distinct risk

preferences such as risk-seeking, risk-neutral, and risk-averse behaviour5? These

categories currently still largely elude perceptual models of risky choice43,46. Second,

preferences appear highly sensitive to contexts: Choices can differ substantially depending

on how decision problems are framed4, such as in which order options are presented28 or

which choice options were seen in earlier choice problems27. Can we mechanistically

account for the influence of context on economic choice, by studying how they alter the

perception of the choice-relevant information? Finally, as alluded to above, economic

choice behaviour is profoundly variable even without any changes in context7,29,30. Where do

these apparent fluctuations in risk preferences come from? Can they originate from

endogenous fluctuations of neural noise, in analogy to how such fluctuations affect

perceptual decisions about low-level visual features51?

To address these questions, we introduce a general computational model of choice, the

Perception and Memory-based Choice Model (PMCM). The model builds on the

assumptions of earlier perceptual models of risky choice43,50 in that it frames risky choice as

a Bayesian inference process on noisy percepts of potential payoffs. However, in the

PMCM, the noisiness of the different percepts relevant to the choice is no longer static but

depends on the particular context of a specific trial. Specifically, in the experiment
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presented here, the noisiness of the representation of a choice option may depend on both

whether a choice option is perceived directly or held in working memory and on the acuity

of neural processing on a particular trial. Thus, the PMCM makes it possible to characterize

the psychological and neural mechanisms by which both exogenous environmental

contexts and endogenous (physiological) factors can shape economic choice on a

moment-to-moment basis. This enables us to provide a decisive test of perceptual theories

of risky-choice mechanisms using biological data.

In the following, we will first describe the risky choice paradigm we developed to modulate

the fidelity with which choice options are represented in the brain, by manipulating the order

in which they are presented. Furthermore, the paradigm allows us to extract an fMRI signal

that corresponds specifically to the acuity of the perception of the payoff of the first choice

option, independent from any choice-related neural activity that comes later in the trial50.

We will then introduce in detail the PMCM and show how it can explain why some people

are generally risk-seeking and some are risk-averse, as well as why people appear

risk-averse for some sets of choices but risk-seeking for others. Finally, we will show that

random fluctuations of sensory neural noise - the acuity of neural magnitude

representations in the right intraparietal cortex as measured using inverted encoding

models50,52,53 - relate mechanistically to choice consistency and risk preferences in tandem,

in line with a Bayesian perceptual account of risky choice. Our results provide conclusive

evidence that risk preferences and their variability across trials and contexts originate (at

least partially) from aspects of perceptual neural processing in parietal cortex. These links

can be captured by a novel Bayesian perceptual model of risky choice that can explain the

observed data mechanistically, as opposed to classical models based on expected utility.

This has profound implications for economic, psychological, and neuroscience theories of

risk-taking, as well as the experimental paradigms used to study and evaluate risk attitudes

in theoretical and applied contexts.

Results

Experimental paradigm

Thirty participants (14 female, aged 20-34) performed the task twice: Once in a 3 Tesla (T)

scanner and once in a 7T scanner. To study how risk preferences relate to the acuity of

perception and the underlying neural representations, we developed a new experimental
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paradigm based on our earlier work50. In our paradigm, participants had to choose between

a sure payoff and gamble with a 55% probability of winning a larger payoff (Fig. 1a).

Crucially, the payoffs of the safe and risky options were presented sequentially as clouds of

1-Swiss Franc coins, preceded by a piechart indicating whether the probability of a payoff

was 55% or 100%. Thus, options were presented either earlier or later in time, regardless of

their riskiness. This design aimed to increase working memory noise for the first-presented

option, thereby enhancing CT biases for the first-presented option.

The payoffs were presented as coin clouds (rather than Arabic numerals) because we know

that such stimulus numerosities can reliably be decoded from rIPS50,54. However, note that

we have recently shown that decisions based on symbolic (i.e., Arabic numerals) and

non-symbolic (i.e., coin clouds) presentations of magnitudes are psychometrically very

similar and rely on the same approximate number system50.

Figure 1: A) Participants were incentivized to choose between two prospects: A risky

option with 55% probability of receiving the payoff and a safe option with 100%

probability of receiving the payoff. Prospects were presented sequentially (6 to 9

seconds in between) as clouds of 1-CHF coins, and payoff probabilities were presented

as both piecharts and symbolic percentages just before the payoff information. Crucially,

either the risky or the safe option was presented first and thus had to be held in working

memory (all choice sets occurred twice for every order for every session). B) Average

choice behaviour confirms that participants were more likely to choose the risky option

when the safe option was presented first, in line with that assumption that options
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presented first (last) are noisier (less noisy) and thus more prone to a central tendency

effect. Error bars correspond to the standard error of the mean over participants. C) The

probability that participants chose the risky option depended on the absolute magnitudes

of the choice options, particularly when the risky option came first. This is a clear

example of a preference reversal: For relatively small-stakes gambles, participants

become (more) risk-seeking when the risky option is presented first. Conversely, for

relatively large-stake gambles, they become more risk-averse.

Different noise contexts shift risk preferences, as predicted by Bayesian

inference on noisy payoff representations

We first examined how exogenous factors that modulate neurocognitive noise – in our case,

the presentation order of the options – impacted choice behaviour. Psychophysical work on

the noisiness of working memory55–57 suggests that the neurocognitive representation of the

initially presented payoffs, retained in working memory, are subject to more noise compared

to the options presented subsequently. Thus, taking a perceptual Bayesian

perspective29,37,43,50, we predicted that those options that were presented first should be

more sensitive to the central tendency (CT) bias, resulting in overestimation of relatively

small payoffs and underestimation of relatively large payoffs. As a consequence, when a

relatively small risky payoff was presented first, participants should be more likely to choose

it compared to when it was presented second. Conversely, when a relatively large risky

option was presented first, it should be less likely to be chosen. For safe options that were

presented first, we expected an analogous pattern - in other words, elicited risk preferences

should be categorically changed by presentation order and overall stake size.

Analysis of the data confirmed these predictions: We found both an order effect (Fig/ 1B;

3T: F(1, 29) = 14.49, p<0.001; 7T: F(1,29) = 5.83, p<0.001) and a main effect of the absolute

stake size (defined as the magnitude of the safe option; Fig. 1C; 3T: F(5, 145) = 6.15,

p<0.001; 7T: F(5, 145) = 5.88; p<0.001), but crucially also the predicted interaction effect

between order and magnitude (Figure 1C; F(5, 145) = 14.21, p<0.001; 7T: F(5, 145) = 13.45,

p<0.001). Indeed, when the risky option came first, participants became risk-seeking and

were more likely to choose the risky option when it was relatively small, but they became

risk-averse and chose the risky option less when it was larger. This is consistent with the

predicted CT bias towards the centre of the range of plausible values in the experiment (see

Fig. 2A for a graphical illustration).
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The Perception and Memory-based Choice (PMC) Model

To account for more complex risky choice environments, like the one in our experiment, we

developed a novel perceptual model of (risky) choice. The crucial new feature compared to

the models employed in earlier work43,50 is that the fidelity with which different choice

options are represented can dynamically change as a function of exogenous or endogenous

context. For example, in our particular experiment, the perception of the first- and

second-presented payoffs can be differentially precise, as the noisiness of the

neurocognitive payoff representation kept in working memory can be expected to be higher

than the representation of the currently perceived payoff57. A second novelty of our model is

that it allows for different prior expectations about specific choice options based on

secondary cues. For example, in most risky choice experiments, the payoffs of risky options

are, on average, substantially higher than those of safe options, and the sequential cued

presentation of the options makes it possible for participants to use this information to their

benefit. Note that both these features of our model and experiment resemble real-life choice

situations, where options are rarely perceived exactly simultaneously and are most often

considered sequentially. By explicitly accounting for this in our design and model, we could

test whether and how participants’ decisions are affected by this feature of a typical choice

situation.

The full PMC model we employed in this study has six parameters: (1) the noisiness with

which the first option is perceived ( ), (2) the noisiness with which the second option isν
1

perceived ( ), (3) the mean of the prior on risky payoffs ( ), (4) the mean of the prior for theν
2

µ
𝑥

safe payoffs ( ), (5) the standard deviation of the prior on risky payoffs ( ), and (6) theµ
𝑐

σ
𝑥

standard deviation of the prior on safe payoffs ( ). Note that these six parameters can beσ
𝑐

estimated in our particular experimental paradigm because the noise of the evidence is

experimentally manipulated by order, orthogonal to the riskiness of the option. We

confirmed the recoverability of the parameters of our model using multiple strategies. When

the model was fitted separately to the same participants’ data for the two scanner sessions,

the six parameter all correlated across the two sessions, with correlation coefficients r(29)

between 0.41 and 0.76 (all p<0.05). A parameter recovery study using the estimated

parameters as generating parameters showed substantial correlations between generating

and recovered parameters, ranging from 0.74 to 0.93. See Supplementary Text 1 for more

details.
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Posterior predictive plots show that our model does an excellent job at predicting the

observed empirical patterns at the group level, including the interaction between

magnitudes and order of presentation (Fig. 2B). Moreover, our model also explains highly

divergent behaviour across individual participants: Some participants are not influenced by

order and/or overall stake sizes, and some participants are risk-seeking rather than

risk-averse. Supplementary Fig. 1 gives some examples of typical behavioural patterns of

representative participants and their posterior predictive plots.

Figure 2: A) Illustration of the intuition behind the Perception and Memory-based Choice

Model (PMCM): When an option is presented first, its evidence will be noisier because

the option needs to be held in working memory and the participants has no direct access

to the corresponding stimulus during the decision (unlike the second option). The first

option will therefore be more influenced by the prior than the second option and have a

larger CT bias. Presentation order can therefore lead to preference reversals. B) The

posterior predictions of the PMCM (95% credible interval as shaded area) can account

for the empirically-observed effects (data points as markers), in contrast to alternative

models (See Figure 3). C) The estimated group parameter posteriors of the extended

model suggest that the payoff of the first option is encoded with substantially more noise
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than the second option (left panel). Furthermore, the prior for risky options is estimated to

have a higher mean payoff (middle panel; although this difference is significant only for

some participants) but also a more narrow range (right panel). Thus, risky payoffs are

more prone to regression effects than safe payoffs. D) Participant-wise estimates of the

differences between key parameters in the model, i.e., between options presented

first/second and the safe versus risky prior. Dots are mean estimates and lines are 95%

credible intervals. Almost all participants have significantly ( ) more noisy𝑝
𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛

< 0. 05

evidence about the first-presented payoff (leftmost panel), but only a subgroup employs

different priors for risky and safe options (middle/right panel). This mean difference in

risky and safe priors relates to the apparent risk preference of the participants (i.e.,

Risk-seeking/risk-averse or risk neutral). For this figure, data from the 3T and 7T sessions

were combined; see Supplementary Fig. 2 for separate analyses of the two sessions.

The first key goal of our study was to explain how seemingly categorically different risk

attitudes (e.g., risk aversion and seeking) may emerge from noisy perceptual inference

processes. Our data reveal that there is indeed considerable variability across both

participants and choice contexts when it comes to whether behaviour is 'risk-seeking',

'risk-neutral', or 'risk-averse'. Indeed, we found that under some circumstances, our

experimental population was risk-seeking on average, namely when the risky option was

presented first, and the safe option was relatively small (5 or 7; Fig. 1C). Our model-based

inference that participants are particularly noisy and/or optimistic about potential prospects

now characterizes the latent decision mechanisms and how they mechanistically lead to

seemingly different behaviour in specific contexts. This appears more useful than a purely

descriptive categorization based on average elicited preference.

The second main goal of our study was to explain why preferences can shift across

different contexts. Our model can naturally explain such context-specific preferences: The

risky payoff is particularly overestimated when it is relatively small and noisy. Moreover, it is

well-known that a non-negligible fraction of experimental populations shows risk-seeking

behaviour on average5,58. Current perceptual models of risky choice cannot account for this

without assuming additional distortions in probabilities43,46. In contrast, our model can:

Risk-seeking participants have particularly optimistic prior beliefs about risky payoffs and

are particularly risk-seeking when their percepts of the objective risky payoff are noisier (see

Fig. 2D; left and middle panel).
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One question about our model might be whether it is unnecessarily complex, as it contains

many parameters to fit the data. We addressed this question with both qualitative predictive

checks and quantitative model comparison techniques, testing whether both dynamic noise

and different priors for risky/safe options are strictly necessary to explain the empirical

data59,60. To do so, we compared the PMCM to four simpler models. The first model was a

baseline model where the noisiness of the first and second options were identical and the

priors were the same for risky and safe options (model A43,50). In the second model, the

noisiness of the first and second options was constant, but the priors for risky and safe

options could be different (model B). In the third model, the noisiness of the first and

second options could be different but the priors for the risky and safe options was shared

(model C). Finally, we also compared our models to a standard expected utility model

(Model D4,23). The posterior predictive plots are presented in Figure 3. Visually, it is evident

that none of the alternative models can explain the interaction effect of magnitude and order

on the proportion of risky choices. Moreover, a formal model comparison using the

Expected Posterior Log Density60 shows that the PMCM is vastly superior to the other four

models. The difference in ELPDs is at least 21 standard errors (Figure 3E). When we used

model stacking61, the model weight of the PMCM was over 95%. These measures thus

provide evidence for both mechanisms (i.e., varying noise for order and varying priors for

risikness) incorporated in our model. To make sure that our model comparison approach

was sufficiently powerful, we also simulated 100 data sets using the 5 different models and

used the same technique to estimate which was the generating model. When the PMCM

was the generating model, it was correctly identified 100/100 times (See Supplementary

Text 2 for more details), demonstrating that our model makes counterintuitive qualitative

predictions that are fully in line with empirical data and can only be captured by this

particular model and not the alternatives.
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Figure 3: A-D) Posterior predictive plots for alternative models of different complexity.

Unlike the PMCM, none of the tested models can explain all qualitative patterns in the

data. Compare to Figure 2B. E) For formal model comparison, we used expected

log-predictive density (ELPD), which estimates the likelihood of unseen data given the

model parameters, making it an effective measure of out-of-sample performance60. As a

state-of-the-art model comparison technique, ELPD comparison demonstrates that the

PMC model significantly outperforms the other models tested (error bars are standard

errors on the ELPD).

Finally, posterior estimates for the group mean of the model parameters (Fig. 2C) reveal

that, as expected, participants have noisier payoff representations for first-presented versus

the second-presented option ( < 0.001 for both sessions). Notably, while at the group𝑝

level, the subjective prior for risky payoffs does not have a higher mean than the prior for

safe payoffs (3T: =0.16, 7T: =0.37, both: =0.16), there were 13𝑝
𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛

𝑝
𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛

𝑝
𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛

participants who had a higher mean prior for risky than safe options ( 95% credible interval

of the difference does not overlap with 0, see Fig. 2D). These individual parameter estimates

suggest that some participants take into account that risky payoffs are higher on average

whereas others do not.
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In sum, our novel experimental paradigm and the PMCM can mechanistically characterize

how a common and relevant context effect (whether options are held in working memory or

perceived immediately) impacts the apparent risk preference of the participants. The model

can explain why the experimental population is risk-averse in some contexts but

risk-seeking in others, and it can account for individual differences in risk preferences.

Decoded payoff representations in parietal cortex predict noisiness and

bias in choice

Having established that individual risk preferences and changes in preference across

different choice contexts can be explained by our Bayesian perceptual account of risky

choice, we now addressed the final question of our study: Where do the trial-to-trial

fluctuations in risk preferences come from? We hypothesized that some choice variability –

over and above the variability determined by context and individual differences – can be

explained by momentary fluctuations in the fidelity of neural representations62–65. Our

previous work has shown that individual differences in the precision of parietal magnitude

coding are predictive of individual differences in risky choice behaviour: Participants with

noisier payoff magnitude representations tend to resort more to their prior beliefs and are,

on average, more risk-averse50. This paves the way for the question whether there is a

comparable relationship between neural noise and behaviour within single decision-makers.

Such a relation could in principle be expected based on findings in perceptual

neuroscience: For examples, trial-to-trial fluctuations in judgments about the orientation of

Gabor patches are predicted by fluctuations in orientation representation in primary visual

cortex52,53,66, and judgments about movement directions relate to differences in neural

activity in middle temporal area (MT)67,68.

To be able to test this hypothesis, we first fitted a numerical receptive field (nPRF) model50,54

to single-trial BOLD responses locked to the first payoff presentation, to preclude that any

decision-related activity would contaminate our measures of neurocognitive representation

(Fig. 1A). The nPRF model assumes that patches of cortex are tuned to numerosity - i.e.,

they have a preferred magnitude to which BOLD responses are largest - and that the size of

the response to a stimulus decreases exponentially with its logarithmic distance to the

preferred numerosity. Numerically tuned cortical areas were similar to previous studies: The

surface-based locations where the model predicted single trial responses best (high

explained variance, ) largely followed the parietal mask based on our earlier study50 (see𝑅2
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Fig. 4A). Moreover, within the mask, vertex-wise values highly significantly correlated𝑅2

across the 3T and 7T fMRI sessions within participants with, on average, r = 0.25 (t(29) =

6.2, p<0.001) and preferred numerosities with r = 0.15 (t(29) = 6.0, p<0.001). These results

confirm that the intraparietal sulcus contains participant-specific patterns of numerosity

encoding that generalize across sessions and even MRI scanners.

After successfully fitting the nPRF model, we used a Bayesian inversion scheme to decode

posterior estimates of presented numerosities from unseen fMRI data (leave-one-run-out

cross-validation)50. Note that this method yields the posterior distributions over numerosity

given the empirically observed single-trial brain activity pattern. Thus, the analysis does not

only give us a point estimate of the expected numerosity (mean of the posterior) but,

crucially, also a measure of the uncertainty surrounding that point estimate. Earlier work in

perceptual neuroscience has shown that the posterior uncertainty surrounding a stimulus

feature decoded from brain activity predicts the randomness and bias of choices and

judgments on those very stimulus features50,52,53.

Before linking neural uncertainty to behaviour, we first assessed the fidelity of the decoder.

The presented payoff magnitudes were decoded well above chance on the level of single

trials, with an average correlation between actual numerosity and decoded numerosity of

r=0.176 (3T; t(29) = 7.1; p<0.001) and r=0.16 (7T; t(29) = 8.0, p<0.001; see also Fig. 4B).

Importantly, the decoded neural uncertainty (s.d. of the decoded posterior) was significantly

correlated with the error of the decoder (absolute difference between mean posterior and

actual numerosity) with r=0.33 (3T; t(29)=9.8, p<0.001) and r=0.38 (7T; t(29)=18.8, p<0.001).

Since the uncertainty of the decoder relates directly to how well it can actually decode a

given neural pattern, we can be confident that the variance in the decoded posteriors is

meaningful and a useful proxy for the neural noisiness of the payoff magnitude

representations that the decision-makers base their choices on50,52,53.

We also conceptually replicated an important result reported before by ourselves50 and

others69, namely that participants with particularly noisy neural representations of

magnitudes in the right parietal cortex also show more noisy and biased behaviour.

Specifically, participants who had a higher correlation between neurally decoded

numerosities and the presented numerosities tended to have a less noisy representation of

the first stimulus magnitude according to our behavioural PMCM (the correlation between

decoding correlation and the dispersion of the likelihood of the first option , r(29) =-0.48,𝑣
1

p =0.007 for 3T and r(29) = -0.42, p=0.021 for 7T). Importantly, participants for which we
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decoded posteriors with, on average, a higher standard deviation also had a larger 𝑣
1

-parameter according to the PMCM (r(29) = 0.44, p=0.014 for 3T and r(29) = 0.38, p=0.039

in the 7T data), thus replicating our earlier findings50 twice, on different scanners.

After reconfirming with these replications both the robustness of our IPS-signal decoder

and the relevance of these parietal regions for individual risk preferences, we proceeded to

test whether within each participant, trial-to-trial fluctuations in apparent risk preference are

related to latent fluctuations in the neural code that represents the potential payoffs that are

at stake. To test this hypothesis carefully, we first further refined it into two subhypotheses:

On trials where neural payoff representations are particularly noisy, choice behaviour should

(a) become less consistent and (b) more biased towards prior beliefs. In the PMCM, both

effects can jointly be explained by an increase in noise. However, we aimed to first test both

hypotheses separately. To do so, we used a standard psychometric model that fits a

psychometric curve with both an indifference point and a psychometric slope to the choice

data as a function of the log-ratio of the risky and safe payoffs43,50. To make sure we found

an effect of neural uncertainty over and above any order- and magnitude-effects, we

performed a median split separately for every possible first-presented payoff and fitted

seperate psychometric curves to these two sets of trials that were matched in payoffs and

order but showed relatively high or low neural noise.

In line with our expectations, the psychometric slope was substantially more shallow for

trials with a higher decoded neural uncertainty ( =0.003; =0.0458 for the 3T𝑝
𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛

𝑝
𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛

data set; =0.0238 for the 7T data set). Thus, the more noisy the signal was𝑝
𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛

according to our neural decoder, the more randomly (i.e., independent from the presented

payoffs) participants chose between the options. To test whether participants were more

biased in their perception of the potential payoffs when their neural representations were

particularly noisy, we tested whether estimated indifference points were further away from

risk-neutrality when neural noise was higher. To do so, we used the risk-neutral probability

(RNP), which defines the indifference point as the probability that an experimenter would

have to present to a perfectly risk-neutral (expected value-optimising) participants to be

indifferent about a choice. In our paradigm, a RNP of 55% corresponds to risk neutrality, a

RNP below 55% corresponds to risk aversion, and an RNP above 55% to risk-seeking.

When we fitted a hierarchical Bayesian psychometric model and sampled the resulting

participants-, payoff- and order-specific RNPs. These RNPs were indeed farther away from

risk-neutrality (55%) when the neural uncertainty was higher (18.5 percent points, s.d. 9.2
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versus 16.7 percent point, s.d. 9.2; <0.001, Fig. 4C; these results replicate when𝑝
𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛

separately estimated for two sessions, = 0.012 for 3T and = 0.013 for 7T).𝑝
𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛

𝑝
𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛

Thus, the less precise the numerosity-tuned responses in IPS according to our decoder, the

more participants reverted to their prior beliefs and the less risk-neutral they became in their

preferences.

Finally, as the ultimate test of the hypothesis that trial-to-trial fluctuations in risk preference

are (partly) driven by fluctuations in neural noise, we tested whether an increase in the noise

parameter of the PMCM can explain the observed link between neural acuity and

behavioural consistency and choice. We hypothesized that, in terms of PMCM parameters,

the first choice option should be represented more noisily when the corresponding decoded

signal was less precise. Therefore, we refitted the PMCM to behavioural data, but now all

six model parameters were estimated as a linear sum of a (participants-wise) intercept and

a regression parameter that was multiplied with the z-scored trialwise neural uncertainty

measures (i.e., the standard deviation of the decoded posterior). If this latter regression

parameter differed from 0, the corresponding latent variable linearly varied with neural

uncertainty70,71. This analysis confirmed that both the noisiness of the first option (3T:

=0.02; 7T: =0.04; both: =0.009; See Fig. 4 and Supplementary𝑝
𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛

𝑝
𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛

𝑝
𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛

Fig. 3) and the standard deviation of the prior on safe payoffs (3T: =0.02, 7T,𝑝
𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛

=0.01; both: =0.004; See Fig. 4 and Supplementary Fig. 3) linearly𝑝
𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛

𝑝
𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛

increased with increased neural uncertainty. These results align with the psychometric

modelling results: When neural noise is high, the representation of the payoff of the first

option becomes noisier, resulting in larger CT biases and more variable behaviour. However,

the increased dispersion of the prior belief about safe payoff magnitudes with increased

uncertainty reveals that it is mostly the risky (rather than safe) options that drive the

increased CT bias with increased neural uncertainty.

In conclusion, we successfully decoded payoff magnitude representations during economic

choice from right parietal cortex, replicated earlier findings of a direct link between the

acuity of an individual's numerical magnitude representation in the IPS and their choice

consistency and elicited preferences, and, crucially, find that trial-to-trial fluctuations in the

acuity of payoff representations in parietal cortex are mechanistically linked to trial-to-trial

fluctuations in choice consistency and risk preference. This provides direct biological
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evidence that the endogenously fluctuating precision of neural magnitude representations

underlies time-variations in revealed risk preferences.

Figure 4: A) Numerical population receptive field (nPRF)-mapping reveals non-linearly

tuned numerosity-sensitive BOLD responses around the intraparietal sulcus, closely

following the ROI drawn on an independent data set (Garcia et al., 2022). Here we show

the average preferred numerosity across all participants in fsaverage-space. B) Almost all

participants (27 out 30 for 3T, 29 out 30 for 7T) show a positive correlation between the

presented stimulus numerosities and decoded posterior means for single trials from

out-of-sample fMRI data. Trial-to-trial fluctuations in the width of the decoded posterior

are indeed predictive of the objective error of the mean posterior. C) Choice behaviour

on trials with a higher decoded neural uncertainty tends to be more biased: the RNP is

further away from risk neutrality (55%). The panel shows posterior estimates of the

average participants-wise distance to risky-neutrality (abs(RNP - .55)). Thus, if

participants were already risk-seeking on a particular trial type (particular order and

particular safe payoff), they behaved even more risk-seeking when neural noise

increased. The opposite effect is observed for participants and trial types for which

behaviour was risk-averse. D) When the main six parameters of the PMCM were allowed

to vary linearly with trial-to-trial fluctuations in the decoded neural uncertainty, both the

noisiness of the representation of the first option and the dispersion of the prior on safe

payoffs increase with neural uncertainty decoded from the first payoff stimulus. The
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noisiness of the second option, the location of the priors, and the dispersion of the prior

on risky payoffs were not related to neural uncertainty.

Discussion
Risk preferences play a central role in many aspects of our behaviour, but we still don’t

understand where they come from, why they change across different contexts, and why

they can even differ for repetitions of identical choices in the same context. Here, we

provide modelling and neurobiological evidence that rapid changes in individual risk

preferences can originate in the neurocognitive processes that underlie our perception of

(monetary payoff) magnitudes. We introduced a new experimental paradigm that modulates

the noisiness with which different choice options are perceived, by presenting them in

different orders as in typical everyday choice situations where options are considered one

after another. This sequential presentation made choice options more/less prone to working

memory noise56,57, resulting in central tendency effects37,49 that lead participants to perceive

the very same choice options as larger or smaller depending on their presentation order and

magnitude. We captured these effects with a new Bayesian model of risky choice - the

PMCM - that explicitly accounts for dynamic fluctuations in the noisiness with which

different choice options are perceived, as well as for different prior expectations based on

the context of a particular choice problem. Crucially, we also used fMRI and inverted

encoding models to provide neural evidence for such rapid fluctuations in neurocognitive

noise and showed that these predict risky choice in a manner consistent with the PMCM.

Our combined results have profound implications for both theoretical and empirical work on

risk preferences. First, in line with other recent work26,27,30, they defy the conventional

economic wisdom that preferences are stable2 and demonstrate that elicited preferences

are systematically unstable, due to fluctuations in the noisiness of neurocognitive

representations of the relevant decision variables. This relevance of noise in the

decision-making process for elicited risk preferences dovetails with earlier work highlighting

that differences in risk preference may easily be conflated with differences in choice

consistency72–74. However, rather than assuming that noise may affect choices

unsystematically at a late stage of the decision process, our model emphasizes that noise

originates early in the decision process, during perception of the choice-relevant

information, thereby determining risk preferences before any actions are taken that would

reveal them.
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A second key implication of our study – congruent with other recent work43,75,76 – is that a

large part of inter- and intra-individual variability in risky choice behaviour can be explained

by fluctuations in basic perceptual neurocognitive representations, over and above any

possible differences in subjective valuation of the choice options. We show that

decision-makers can show preference reversals (i.e., become risk-seeking rather than

risk-averse) simply due to changes in the order in which choice options are presented. This

raises the crucial question to what extent variability in risky choices really reflects subjective

valuation (as opposed to noisy perception), as usually assumed in standard economic

models. Notably, our PMC model, which contains no subjective valuation process, could

explain a wide range of choice patterns across subjects and contexts, whereas a standard

economic choice model based exclusively on subjective evaluation (the EU model) failed to

do so. While this evidently does not prove that subjective valuation is not involved in risky

choices, it still suggests that perception may play a more important role, at least in the

small-stake laboratory experiments widely used to study risk preferences.

This substantial impact of perception on elicited preferences (rather than valuation) might

explain the 'risk elicitation puzzle': the fact that elicited individual risk preferences are only

marginally correlated across elicitation methods6. Moreover, the central role of perceptual

effects for elicited risk preferences may have profound implications for welfare economics,

which often relies on elicited preferences to calibrate models of the impact of economic

policies77. Thus, future work should attempt to further unravel potentially separate

contributions of neurocognitive processes related to subjective valuation versus perception

to individual preferences and, if possible, develop economic choice tasks where perception

can be dissociated from participant's subjective valuation. For this agenda, it may be

important to take seriously the proposed conceptual distinction between elicited risk

preferences (overt behaviour) and risk attitudes (underlying latent traits)24; the latter may

arguably be a more relevant target variable for welfare-related questions than overt choices

alone77.

Future studies attempting to dissociate valuation and perception should systematically

manipulate both sets of processes. Valuation may be experimentally manipulated by

changing objective choice properties and comparing qualitatively different decision-makers,

while perception may be influenced by orthogonally manipulating the fidelity of the

choice-relevant information. Here we did so by representing potential payoffs with

non-symbolic stimulus arrays and changing their order. One might argue that this choice
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context may induce effects in a purely 'low-level perceptual' manner that should be absent

for choices with more common Arabic numerals. However, there is ample evidence that

Arabic numerals are far from immune to perceptual effects78. For example, when

participants have to make decisions about rapidly-presented Arabic numerals, they are

sensitive to order effects79 and the underlying statistics of the presented numerals80, just as

for the non-symbolic presentation formats in the study presented here. Furthermore, recent

neuroscience studies have shown that numerosity-tuned regions similarly represent both

symbolic Arabic numerals and non-symbolic stimulus arrays81. Finally, our recent work50 has

shown that the performance on a perceptual task involving the numerosity of stimulus

arrays predicts both choice consistency and risk preference in independent risky choice

tasks involving both non-symbolic and Arab numerals. This highlights that non-symbolic

and symbolic presentation formats can be combined to manipulate the noisiness of choice

information, in order to unravel valuation and perception.

The finding that our Bayesian model of the inference underlying perception could account

for several counterintuitive context effects on risk preferences suggests that this type of

model may be important to fully understand several other effects documented in the

literature. For example, another well-established determinant of the acuity of choice

information is the time that choice information is attended to. Indeed, eye-tracking data

show that both the order and duration with which participants attend to relevant choice

variables profoundly influence economic choice82. Importantly, participants act as if they

multiply relative values of choice options with the amount of time they gaze upon a choice

option83,84. This multiplicative effect is fully consistent with a Bayesian account where

attention increases the fidelity with which we perceive information. Thus, particularly

valuable options are chosen more often with increased attention, but less-valuable options

less often (since the CT effect will decrease as a function of dwell time). Future studies

should thus attempt to explicitly link such models to the type of Bayesian models of

perception we employed here. Another way in which perceptual processes preceding

putative valuation may affect preferences are changes in the statistics of the local

environment85. Indeed, it is well-known that elicited preferences are sensitive to the larger

choice set across an experiment27. Future studies should thus attempt to further test with

rigorous Bayesian modelling whether these choice set effects are not only qualitatively but

also quantitatively consistent with a model where subjective priors adapt to the local choice

context37,46,86.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 23, 2024. ; https://doi.org/10.1101/2024.08.23.609296doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.23.609296
http://creativecommons.org/licenses/by/4.0/


Our work also has implications for existing neuroeconomic studies and opens up some

exciting new research directions. First, studies attempting to identify neural correlates of

subjective value87 need to take into account that at least under some conditions, subjective

values inferred from choice behaviour might be a compound measure that also includes

perceptual noise and biases, which can profoundly influence any decision variable

constructed from this information. This means that neural correlates of subjective value

might include perceptual areas as well as 'true' valuation areas88,89. However, our work also

suggests that computational modelling of behavioural and neural data could help

decompose these sources of choice variability90. It will be interesting to see whether

explicitly incorporating perception in such models can help to elucidate whether subjective

value is represented in the brain completely independently from perceptual variables.

Second, our results suggest a key role for parietal regions in economic decisions that

involve (numerical) magnitudes. Most neuroeconomic theories propose that, during choice,

subjective values are represented in the ventromedial and/or orbitofrontal cortex

(vmPFC/OFC)91, whereas parietal cortex is generally conceptualized as a brain region that

integrates the final evidence for different choice options based on subjective or objective

stimulus properties92–94. However, our results suggest that, at least when magnitudes are

involved, parietal cortex also directly represents initially choice-relevant stimulus information

during perception of the choice problem. This provides a new explanation for earlier

discoveries of neural substrates of subjective value of specific choice options in the parietal

cortex of non-human primates95,96, as well as recent work using brain stimulation that shows

that activity in parietal cortex is causally involved in risky choice97,98.

Clearly, the precise role of parietal cortex in economic choice remains to be fully elucidated

and is likely to be dependent on the specifics of the choice task, as well as the phase of

decision-making during which one monitors parietal activity. However, one promising

working hypothesis could be that when objective magnitudes are involved, parietal cortex

can both represent relevant magnitudes (e.g., probability of payoff99 or monetary amounts50)

of the option currently under consideration/attention99,100, as well as accumulate finaly

evidence for choice options, as also found in recent work on perception101. Notably, almost

all work in (human) neuroeconomics has assumed linear coding of subjective value in large

cortical locations that adhere to macro-anatomy (i.e., MNI space). However, our work

suggests a non-linear code that is only loosely related to macro-anatomy – at least for

parietal representations of potential payoffs (see also work on non-linear coding of
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probabilities99). More sophisticated fMRI analysis approaches may thus be needed to fully

delineate representations of objective stimulus information and subjective values during

economic choices89. For instance, studies decomposing subjective value in its constituent

parts (basic perceptual and subjective) should aim to use analysis frameworks that allow for

non-linear codes and take into account individual functional neuroanatomy. An exciting

open question for such work may be how fluctuations in early perceptual representations of

a choice problem (e.g., potential payoff) covary with prefrontal representations of subjective

value.

Our work aligns with a recent body of research that conceptualizes economic choices as

rational responses to cognitive capacity constraints29,38,75,102,103 and makes three new

contributions to this literature. First, we present a computational model that can be used to

estimate how choice contexts modulate both prior beliefs and perceptual noise associated

with different choice options. Second, our PMC model can mechanistically explain how

discrete categories of risk preferences (i.e., risk-averse, risk-neutral, risk-seeking) can be

understood as a continuum emerging from the interplay between subjective beliefs about

potential payoffs and noisiness of perception, and can predict corresponding preference

changes across different contexts. Third, we present neuroimaging evidence that fully

endogenous fluctuations in the noisiness of neural representations of economic variables23

determine economic preference in line with a Bayesian perceptual account. This last finding

also highlights the promise of using advanced neuroimaging data and analysis methods to

help validate and refine computational models of economic choice104. Future work in this

direction may, for examples, link economic preferences to the noisiness of neural

representations of other relevant economic choice variables, like probability75,99,105,

time106,107, and social constellations17,108.

Finally, our results also have potential clinical and policy implications. First, the abundant

preference for gambling has long been a puzzle for economists109,110. Might the preference

for gambling be explained as a misperception of the potential payoffs? One relevant finding

in problematic gambling is increased arousal during gambling situations111,112, which is

known to interact with perceptual biases113. Indeed, gamblers report unrealistically

optimistic beliefs about potential outcomes114–116. Future work might investigate false beliefs

in problematic gamblers using explicit Bayesian models of risk perception117,118. Such false

beliefs might have important policy and moral implications for the public communication

about gambling. Our results also have implications for the domain of finance. In personal
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banking, it has become common practice to elicit risk preferences when taking on new

clients119. If perceptual effects partly drive such elicited preferences, these estimations

might be erroneous and clients might be offered an investment portfolio that is overly

defensive, just because they have relatively noisy numerical perception or overly pessimistic

beliefs about potential long-term stock returns.

To conclude, our work reveals that perceptual biases to presentation order and relative

magnitudes, as well as brain state, can profoundly impact an individual's elicited risk

preferences, and they introduce an experimental and modelling approach that can be used

to systematically investigate such effects for a whole range of economic choices. Our

findings empirically substantiate emerging proposals that economic preferences should be

understood as the fluctuating output of a capacity-limited brain rather than fixed as-is

economic preferences29,38,43,102,103. Our new model and experimental approach is highly

relevant to (neuro)economic research because it formalizes why there might be no such

thing as an 'objective' risk preference that is completely independent of context and brain

state6,120, and allows researchers to quantify the corresponding effects. More generally, our

study demonstrates that attempts to quantify preferences need to consider the substantial

variability in responses and should be mindful of potential confounds like presentation (or

fixation) order and the general range of options offered during an experiment. These

considerations can profoundly impact real-world practice as well, for example when risk

elicitation paradigms are increasingly used to compile investment portfolios119 or

characterize the symptoms of psychiatric disorders121,122.
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Methods

Participants and ethics

Thirty right-handed participants (14 females, ages 20 to 34) volunteered to participate in this

study. We informed them about the study’s objectives, the equipment used in the

experiment, the data recorded and obtained from them, the tasks involved, and their

expected payoffs. We also screened participants for MR compatibility prior to their

participation in the study. No participant had indications of psychiatric or neurological

disorders or needed visual correction. Our experiments conformed to the Declaration of

Helsinki, and our protocol was approved by the Canton of Zurich’s Ethics Committee.

Procedure

Participants were invited for a total of 4 sessions. Two sessions took place at the 3T

scanner and two sessions took place at the 7T scanner (see ‘MRI parameters’ for more

information on scanner type and scanning parameters). Participants always first performed

two sessions at one scanner, before the other two at the other scanner. Seventeen (17)

participants performed the first two sessions at the 7T scanner, the other 13 at the 3T

scanner. During the first and third session –so both at the 3T and 7T scanner– participants

performed a calibration version of the risky choice task so we could estimate their average

risk preference and choice consistency within a specific scanner environment before they

performed the main task of interest. The calibration task was done in the scanner while

undergoing anatomical scans. Participants made choices about 96 possible risky gambles

(the safe payoff was either 5, 7, 10, 14, 20, or 28; the risky option was a times the safe2ℎ/4

option with h being all integers between 1 and 8). These offers were presented twice, once

with the safe option first and once with the risky option first. A psychometric probit model

with "chose risky option" as the dependent variable and an intercept and the log-ratio of the

risky and safe option 43 as independent variables was fitted to these calibration data. The

fitted model established the precise mapping between risky/safe payoff ratios and the

proportion of risky choices. We then made a participants-tailored design with 8 fractions

equally spaced in log-space that –according to the psychometric model– were predicted

(equally-spaced) proportions of risky choices between 20% and 80%. These 8 fractions

were combined with 6 safe payoffs (5/7/10/14/20/28). Also, all these offers were presented
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twice with the safe option first and twice with the risky option presented first (so, for every

session, each possible safe/risky/order-permutation occurred twice). This amounted to 192

trials per session. After the anatomical scans and the calibration task, participants

performed a numerosity mapper task following Harvey et al. (2013; data not shown in this

paper).

For the second session in a scanner, participants filled in all information and consent forms

and then immediately performed 192 trials of the risk task in the scanner, spread out over 8

blocks of approximately 5 minutes each.

After all 4 sessions, we selected a random risky choice trial from each of the two calibration

sessions and one of each of the main task sessions. For the risky trials, a digital random

number generator was used to hand out the risky option 55% of the time. The participants

got the average payout across the 4 sessions on top of their hourly fee (30 CHF per hour;

approximately 30-35 USD).

Experimental paradigm

The task of the participants was, for every trial, to choose between a certain amount of

money (5/7/10/14/20 or 28 CHF) or a gamble with 55% probability of winning a larger

amount of money and a 45% probability of winning nothing at all. The choices were

presented by a sequence of tailored stimuli. The general sequence is illustrated in Fig. 1A.

The screen always contained a red cross with two diagonal lines to keep fixation near the

centre of the screen and to not confound the numerosity of stimuli like a standard fixation

cross or point might54. The start of a new trial was indicated by the fixation cross turning

green for 250 ms. Then, after a pause of 300 ms with just a red fixation cross, a pile chart

with a diameter of 1 degree-of-visual-angle (dova) was presented for 300 ms to indicated

the probability-of-payout for the coming stimulus. This was always either 55% or 100%.

Then, after another 500 ms of just fixation cross, a stimulus array of 1-CHF coins appeared

that represented the potential payoff of the first choice option. The coins had a radius of 0.3

dova (degrees of visual angle) and were all randomly positioned with their centre within a

circular aperture with a diameter of 5.25 dova. The coin stimulus array was presented for

600 ms, after which only the fixation cross was presented for a jittered duration of either 5,

6, 7, or 8 seconds. Then, a piechart indicating the probability of the second payoff was

presented for 300 ms, followed by a 300ms fixation screen, and another coin stimulus array,

representing the potential payoff of the second option, again for 600 ms. As soon as the
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second stimulus array was presented, participants could indicate their response with their

index (first-presented option) or middle finger (second-presented option). As soon as they

responded, they saw a 1 or 2 indicating which option they had chosen for 500 ms. After the

coin stimulus pile was presented, the remaining duration of the trial was either 4, 4.5, 5, or

5.5 seconds. During the time that was left after the feedback stimulus, participants had to

indicate "how certain" they were about their choice using a 4-step Likert scale (by pressing

response buttons with four fingers, from index finger-pinky). The results from this certainty

rating are not presented in this paper.

On the 3T scanner, stimuli were presented using a projector on a white screen at the back

of the bore and a hot mirror system on top of the coil system (1920 x 1080). The projector

screen was at a distance of 125cm from the participants's eyes and was 42 cm wide,

corresponding to a field-of-view of approximately 19 DoVA. At the 7T scanner, stimuli were

presented using the Avotec (Avotec, FL, USA) binocular goggle system (800 x 600) with a

field-of-view of approximately 25 DoVA.

Behavioural analyses

Psychometric/KLW model

Model specification

Khaw, Li, and Woodford43 showed that in risky choice paradigms where participants choose

between a certain payoff and a risky payoff with a probability of payout , observed𝐶 𝑋 𝑝

choice behaviour can be understood as the outcome of a Bayesian inference process.

Specifically, their model (from on referred to as KLW model) assumes that participants do

not make decisions based on the objective payoffs and , but based on noisy𝐶 𝑋

representations of those payoffs, described as random variables and . The likelihood𝑟
𝑥 

𝑟
𝑐 

function describes the probability of noisy representations conditional on and :𝐶 𝑋

,𝑟
𝑥 

~ 𝑁(𝑙𝑜𝑔 𝑋,  ν2) 𝑟
𝑐 

~ 𝑁(𝑙𝑜𝑔 𝐶,  ν2)

As can be seen in the formula, these representations take place in a

logarithmically-transformed payoff space. This means that participants will adhere to

Weber's law. Thus, in natural space, the randomness of their choice behaviour is predicted

by ratios between options rather than absolute differences in natural space. Moreover, the
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parameter now determines the noisiness of representations and thereby how variableν

behaviour will ultimately be.

Crucially, the KLW model also assumes that people apply a common prior for both the risky

and safe options:

)𝑙𝑜𝑔 𝑋,  𝑙𝑜𝑔 𝐶 ~𝑁(µ,  σ2

In the KLW model, the -parameter has no influence on predicted behaviour. However,µ

because the decision-maker applies the same common prior to both risky and safe options,

risky options will always be relatively underestimated compared to the safe option (this is

because risky options always have higher payoffs than safe options for them to be

attractive to the participants). The extent to which underestimation of larger payoffs

happens is a function of the ratio between the variance of the likelihood and theν2

dispersion of the prior , :σ2 β

β = σ2

σ2  + ν2

Specifically, the conditional expected values of the two options conditional on are:𝑟

𝐸[𝑋|𝑟] =  𝑒
α+β𝑟

𝑥,  𝐸[𝐶|𝑟] = 𝑒
α+β𝑟

𝑐 

where is a function of the mean and standard deviation of the prior:α

α =  (1 − β)[µ + (1/2)σ2]

(Rational) participants will choose the risky option if and only if > or,𝑝 ×𝐸[𝑋|𝑟] 𝐸[𝐶|𝑟]

equivalently, , or Since both and arelog  𝑝 +  β𝑟
𝑥

> β𝑟
𝑐

log  𝑝 +  β𝑟
𝑥

− β𝑟
𝑐

> 0 𝑟
𝑥

𝑟
𝑐

(independent) Gaussian random variables, conditional on and , their difference is a𝑋 𝐶

Gaussian variable as well:

𝑟
𝑥

− 𝑟
𝑐
~𝑁(log 𝑋 − log 𝐶,  2ν2)

Crucially, this means that the probability that the participants chooses the risky option (

) conditional on and can be described using the cumulativelog  𝑝 +  β𝑟
𝑥

− β𝑟
𝑐

> 0 𝐶 𝑋

normal distribution :Φ(𝑥)

Φ(− β−1log𝑝−1−log(𝑋/𝐶)
2⋅ν

)

The likelihood of the KLW model is equivalent to that of a Generalized Linear Model (GLM)

with the Normal CDF as the link function and a Bernoulli error distribution (probit model;Φ

see Ref. 120). Such a GLM can be fitted using of-the-shelf functions in most standard
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statistical modelling software. When using a GLM-approach, the choice of the risky option

is the dependent variable and an intercept (all 1's) regressor and as a regressor.log(𝑋/𝐶)

Crucially, the resulting intercept parameter and slope parameter from the probit modelδ γ

can then be re-expressed in the parameters of the KLW model:

,γ = 1
2ν

δ = β−1log𝑝−1

2ν

Parameter estimation

We fitted the psychometric model using the Bayesian hierarchical GLM-estimation package

Bambi123. The standard probit model assumes that choices are determined by a fixed effect

of both an intercept (determining the risk aversion) and the log ratio of the risky and safe

option. We also estimate participants-wise random effects on all parameters so we had

participants-wise KLW parameters:

𝑝(𝑟𝑖𝑠𝑘𝑦_𝑐ℎ𝑜𝑖𝑐𝑒) ~ Φ(β
0
 +  β

1
 log 𝑋

𝐶  +  (β
2,𝑖

 +  β
3,𝑖

log 𝑋
𝐶 ))

Where and are fixed effects and and are random (participant-specific) effects.β
0

β
1
 β

2,𝑖
 β

3,𝑖

or, in the formula-syntax of lme4/bambi:

risky_choice ~ 1 + log_risky_safe_order + (1 + log_risky_safe_|participant_id)

For some analyses in which we wanted to see how risk preferences are modulated for

different contexts, we also included the order and/or the value of the safe option in the

model as independent variables, so:

risky_choice ~ 1 + log_risky_safe_order*n_safe + (1 +

log_risky_safe_*order*n_safe|participant_id.

Note that the point-of-indifference of the probit model is a function of both the intercept δ

and slope parameter ( ). To meaningfully quantify the point-of-indifference, we usedγ − δ
γ

the risk-neutral-probability (RNP)43,50. This is the hypothetical probability of the risky option
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for which a risk-neutral decision-maker would show the same point-of-indifference as the

participants. Thus, any RNP above 55% implies risk-seeking, whereas any RNP below 55%

implies risk aversion. We defined participants as being risk-averse when the 95% Credible

Interval of their RNP was below .55, and risk-seeking if the CI was above .55. When the CI

overlapped with .55, we categorised participants as risk-neutral.

The risk neutral probability can be derived from the slope and intercept as follows:γ δ

exp(− δ
γ )

To fit the hierarchical probit/KLW model, we used the standard weakly informative priors as

implemented by default in the Bambi (based on the approach of the well-known

rstanarm-package) package123. Briefly, the priors are Gaussian distributions centred at 0,

with as a standard deviation 2.5 times the ratio between the standard deviation of the

dependent and independent variable123. To sample from the parameter posteriors, we used

the no U-Turn sampler (NUTS), which is a self-tuning version of the Hammiltonian MCMC

sampler and is particularly efficient for high-dimensional models with correlations between

the parameter, such as our model here124. We collected 4 chains of 2000 samples each

(1000 burnin). We always visually inspected the traces of the NUTS sampler and made sure

the Gelman-Rubin statistic was below 1.05 for all parameters.

PMC model

Model specification

Our Perceptual Memory-based Risky Choice model (PMCM) assumes that participants

base their risky choices on noisy representations of the payoffs and choose the one with

the largest expected payoff on a particular trial. Crucially, in the PMCM, the noisiness of the

representation may depend on the order of presentation:

,𝑟
𝑥,1 

~ 𝑁(log  𝑋,  ν
1

2) 𝑟
𝑥,2 

~ 𝑁(log  𝑋,  ν
2

2)

,𝑟
𝑐,1 

~ 𝑁(log  𝐶,  ν
1

2) 𝑟
𝑐,2 

~ 𝑁(log  𝐶,  ν
2

2)

Where pertains to the representation of the payoff of the risky option presented first,𝑟
𝑥,1 

𝑟
𝑥,2

to the representation of the payoff of a risky option presented second, to the𝑟
𝑐,1 
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representation of the payoff of a safe option presented first, and to the payoff of a safe𝑟
𝑐,2 

option presented second. Note that the noisiness of the risky and safe options is theν
𝑖

same, only order of presentation influence noisiness. We expected that the noise for the

first option will be higher than that of the second option , but this is not enforcedν
1

ν
2

anywhere in the model (e.g., they have identical priors in the estimation procedure).

The PMCM also assumes that participants (potentially) employ different priors for the risky

and safe payoffs, because these payoffs come from objectively different distributions:

,log  𝑋 ~ 𝑁(µ
𝑥
,  σ

𝑥
2) log  𝐶 ~ 𝑁(µ

𝑐
,  σ

𝑐
2)

For a given parameter set and objective payoffs and , we can now[ν
1
,  ν

2
,  µ

𝑥
,  µ

𝑐
,  σ

𝑥
,  σ

𝑐
] 𝑋 𝐶

obtain the distribution of the expectations of the participants for the two options, which is

the product of the prior and evidence distributions and follows a normal distribution (in

logarithmic space) :

𝐸[log 𝑋|𝑟] ~ 𝑁(𝑟
𝑥

+  
ν

𝑖
2

ν
𝑖
2+σ

𝑥
2 ⋅(µ

𝑥
− 𝑟

𝑥
), ν

𝑖
2)

𝐸[log 𝐶|𝑟] ~ 𝑁(𝑟
𝑐

+  
ν

𝑖
2

ν
𝑖
2+σ

𝑐
2 ⋅(µ

𝑐
− 𝑟

𝑐
), ν

𝑖
2)

Thus, the distribution of differences between these expectations in log space is given by the

difference of these two distributions, - , which is also a normal 𝐸[log 𝑋|𝑟]  𝐸[log 𝐶|𝑟]

distribution:

 𝐸[log 𝑋|𝑟] −   𝐸[log 𝐶|𝑟] ~ 𝑁(δ , σ')

with

δ = 𝑟
𝑥

+  
ν

𝑖
2

ν
𝑖
2+σ

𝑥
2 ⋅(µ

𝑥
− 𝑋) −  (𝑟

𝑐
+  

ν
𝑖
2

ν
𝑖
2+σ

𝑐
2 · µ

𝑐
− 𝑟

𝑐( ) )

and

+ς2 =  ν
1

2 ν
2

2

The likelihood of choosing the risky option according to the PMCM is defined as the

probability that the participant's estimate of the difference between the risky and safe

option ( ) is larger than the payout probability of the risky option in 𝐸[log 𝑋|𝑟] −   𝐸[log 𝐶|𝑟]

log space:

𝑝(𝐸[log 𝑋|𝑟] +  log 𝑝 >  𝐸[log 𝐶] ) = Φ( log𝑝 +δ
ς ) 
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Where is the standard cumulative normal distribution.Φ(𝑥)

Model estimation

We implemented the PMCM using the Bayesian statistical modelling library pymc (v.5)125

and wrapped it in our Python package bauer1. We used a hierarchical (regression) approach

for estimation. This means that for all main six parameters of the model

, we assume a group distribution which is a Gaussian distribution.[ν
1
,  ν

2
,  µ

𝑥
,  µ

𝑐
,  σ

𝑥
,  σ

𝑐
]

Furthermore, for the - and -parameters, which are necessarily non-negative, weν σ 

estimated transformed parameters in an unrestricted space ] which we then[− ∞,  ∞

transformed into the non-negative domain ] using the softplus function[0,  ∞

.log(1 +  exp(𝑥))

For a given parameter (e.g., or ), the participants-specific parameter of participantsθ ν
1

σ
𝑥

𝑝

was a linear combination of the mean group parameter plus an individually-determinedµ
θ

offset-parameter times the standard deviation of the group distribution :δ
θ

σ
θ

θ
𝑝

= µ
θ

+ δ
θ

· σ
θ
 

This offset-based specification of the hierarchical model was chosen to prevent the

likelihood "funnels" that plague high-dimensional hierarchical models126.

When relating the PMCM parameters to neural measures, we used a regression approach70,

where a given parameter (e.g., or ) of participants on a trial was a linear sum ofθ
𝑝

ν
1

σ
𝑥

𝑝 𝑡

both an intercept and a regression coefficient times the neural measure at trial , :θ
0

θ
𝑛

𝑡 𝑛
𝑡

θ
𝑝,𝑡

 =  θ
𝑝,0

+ θ
𝑝,𝑛

· 𝑛
𝑝,𝑡

We used mildly informative priors on all group distribution parameters:

For the evidence parameters:

(before softplus transformation)µ
ν

1
,
µ

ν
2

~ 𝑁(− 1,  0. 5)

For the mean of the prior on risky payoffs:

µ
µ

𝑥

~ 𝑁(µ
^

𝑥
,  0. 5)

Where is the objective mean of the payoffs of risky options (in log space)µ
^

𝑥

1 https://github.com/ruffgroup/bauer/
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For the mean of the prior on safe payoffs:

µ
µ

𝑐

~ 𝑁(µ
^

𝑐
,  0. 5)

Where is the objective mean of the payoffs of safe options (in log space)µ
^

𝑥

For the standard deviation of the priors:

(before softplus transformation)µ
σ

𝑥

, µ
σ

𝑐

~ 𝑁(0,  0. 5)

The regression coefficient on (z-scored) neural measures was a Gaussian centred at 0 with

a standard deviation of 1:

µ
θ

𝑛

~ 𝑁(0,  1.)

The prior on all group variance parameters was a Half-Cauchy parameter 127:

σ
ν

1

,  σ
ν

2

, σ
µ

𝑥

, σ
µ

𝑐

,  σ
σ

𝑥

, σ
σ

𝑐

,  σ
θ

𝑛

~ ℎ𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(0. 25) 

Posterior estimates were obtained using the NUTS-sampler as implemented in pymc 5

using a target acceptatnce rate of 90%. We obtained 4 chains with 3000 samples each

(1500 burnin). If we encountered divergences, we increased the target acceptance rate to

92.5%.

To obtain estimates of the size and presence of an effect, we used "Bayesian" p-values –the

probability mass of the posterior estimate above/below 0128. We generally used one-tailed

cutoffs of 5% probability mass.

Model comparisons were performed using the estimated log pointwise predictive density

(ELPDELPD; 60) which is a state-of-the art model comparison technique that – unlike other

information theoretic measures like BIC and DIC – takes into account the shape of the

posterior distribution and the effective number of parameters of the model.

MRI parameters

3T

We acquired functional MRI data using the Philips Achieva 3T whole-body MR scanner

equipped with a 32-channel MR head coil, located at the Laboratory for Social and Neural

Systems Research (SNS-Lab) of the UZH Zurich Center for Neuroeconomics. We collected
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8 runs of fMRI data with a T2*-weighted gradient-recalled echo-planar imaging (GR-EPI)

sequence (150 volumes + 5 dummies; flip angle 90 degrees; TR = 2286 ms, TE = 30ms;

matrix size 96 × 70, FOV 240 × 175mm; in-plane resolution of 2.5 mm; 39 slices with

thickness of 2.5 mm and a slice gap of 0.5mm; SENSE acceleration in phase-encoding

direction (left-right) with factor 1.5; time-of-acquisition 4:52 minutes). Additionally, we

acquired high-resolution T1weighted 3D MPRAGE image (FOV: 256 × 256 × 170 mm;

resolution 1 mm isotropic; 𝑇𝐼 = 2800 ms; 256 shots, flip angle 8 degrees; 𝑇𝑅 = 8.0 ms; 𝑇𝐸 =

3.7 ms; SENSE acceleration in left-right direction 2; time-of-acquisition 5:35 minutes).

7T

We also acquired MRI data using a Philips Achieva 7T whole-body MR scanner (located at

the Institute for Biomedical Technology of ETH Zurich) equipped with: 7T MRI quadrature

transmit/32-channel head receive array coil (Nova Medical). For the functional data, we

acquired T2*-weighed GRE-EPI sequences (150 volumes + 5 dummies); flip angle 74

degrees, TR=2300 ms; TE = 15ms; matrix size 109 x 128; FOV 190 x 224 mm; in-plane

resolution of 1.75 mm; 76 slices with thickness of 1.75 mm with no slice gap;

SENSE-acceleration in phase-encoding direction (left-right) with factor 3; Multiband

acceleration with factor 2; time-of-acquisition 5:35 minutes). At the 7T, acquired a

T1-weighted 3D MPRAGE image (FOV: 240 x 240 x 160 mm; resolution 0.8 x 1.0 x 0.8 mm;

TI = 3000 ms; 164 shots; flip angle 7 degrees; TR = 9.8 ms; TE = 4.5 ms; SENSE

acceleration in left-right direction 3; in anterior-posterior direction 1.5; time-of-acquisition:

4:43 minutes).

fMRI preprocessing

Preprocessing on fMRI data was performed using fMRIPrep 20.2.2 129, which is based on

Nipype 1.6.1 130,131.

Anatomical data preprocessing

The T1-weighted (T1w) images collected from the 3T and 7T data were processed together.

All of them were corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection 132,

distributed with ANTs 2.3.3 133. The T1w-reference was then skull-stripped with a Nipype

implementation of the antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as
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target template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM)

and gray-matter (GM) was performed on the brain-extracted T1w using fast FSL 5.0.9; ,134. A

T1w-reference map was computed after registration of 3 T1w images (after INU-correction)

using mri_robust_template FreeSurfer 6.0.1 135. Brain surfaces were reconstructed using recon-all
FreeSurfer 6.0.1; ,136, and the brain mask estimated previously was refined with a custom variation

of the method to reconcile ANTs-derived and FreeSurfer-derived segmentations of the

cortical gray-matter of Mindboggle 137. Volume-based spatial normalization to one standard

space (MNI152NLin2009cAsym) was performed through nonlinear registration with

antsRegistration (ANTs 2.3.3), using brain-extracted versions of both T1w reference and the

T1w template. The following template was selected for spatial normalization: ICBM 152

Nonlinear Asymmetrical template version 2009c 138,

Functional data preprocessing

For each of the 24 BOLD runs found per participants (across all tasks and sessions), the

following preprocessing was performed. First, a reference volume and its skull-stripped

version were generated using a custom methodology of fMRIPrep. BOLD runs were

slice-time corrected using 3dTshift from AFNI 20160207 139. Head-motion parameters with

respect to the BOLD reference (transformation matrices, and six corresponding rotation and

translation parameters) are estimated before any spatiotemporal filtering using mcflirt FSL 5.0.9;

,140. A B0-nonuniformity map (or fieldmap) was estimated based on two (or more)

echo-planar imaging (EPI) references with opposing phase-encoding directions, with

3dQwarp 139 (AFNI 20160207). Based on the estimated susceptibility distortion, a corrected

EPI (echo-planar imaging) reference was calculated for a more accurate co-registration with

the anatomical reference. The BOLD reference was then co-registered to the T1w reference

using bbregister (FreeSurfer) which implements boundary-based registration 141.

Co-registration was configured with six degrees of freedom. The BOLD time-series

(including slice-timing correction when applied) were resampled onto their original, native

space by applying a single, composite transform to correct for head-motion and

susceptibility distortions. These resampled BOLD time-series will be referred to as

preprocessed BOLD in original space, or just preprocessed BOLD. The BOLD time-series

were resampled onto the following surfaces (FreeSurfer reconstruction nomenclature):

fsaverage, fsnative. Several confounding time-series were calculated based on the

preprocessed BOLD: framewise displacement (FD), DVARS and three region-wise global
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signals. FD was computed using two formulations following Power absolute sum of relative motions, 142

and Jenkinson (relative root mean square displacement between affines, 140. FD and DVARS

are calculated for each functional run, both using their implementations in Nipype (following

the definitions by Power et al. 2014). The three global signals are extracted within the CSF,

the WM, and the whole-brain masks. Additionally, a set of physiological regressors were

extracted to allow for component-based noise correction CompCor, 143. Principal components

are estimated after high-pass filtering the preprocessed BOLD time-series (using a discrete

cosine filter with 128s cut-off) for the two CompCor variants: temporal (tCompCor) and

anatomical (aCompCor). tCompCor components are then calculated from the top 2%

variable voxels within the brain mask. For aCompCor, three probabilistic masks (CSF, WM

and combined CSF+WM) are generated in anatomical space. The implementation differs

from that of Behzadi et al. in that instead of eroding the masks by 2 pixels on BOLD space,

the aCompCor masks are subtracted a mask of pixels that likely contain a volume fraction

of GM. This mask is obtained by dilating a GM mask extracted from the FreeSurfer’s aseg

segmentation, and it ensures components are not extracted from voxels containing a

minimal fraction of GM. Finally, these masks are resampled into BOLD space and binarized

by thresholding at 0.99 (as in the original implementation). Components are also calculated

separately within the WM and CSF masks. For each CompCor decomposition, the k

components with the largest singular values are retained, such that the retained

components’ time series are sufficient to explain 50 percent of variance across the nuisance

mask (CSF, WM, combined, or temporal). The remaining components are dropped from

consideration. The head-motion estimates calculated in the correction step were also

placed within the corresponding confounds file. The confound time series derived from

head motion estimates and global signals were expanded with the inclusion of temporal

derivatives and quadratic terms for each 144. Frames that exceeded a threshold of 0.5 mm

FD or 1.5 standardised VARS were annotated as motion outliers. The BOLD time-series

were resampled into standard space, generating a preprocessed BOLD run in

MNI152NLin2009cAsym space. First, a reference volume and its skull-stripped version were

generated using a custom methodology of fMRIPrep. All resamplings can be performed

with a single interpolation step by composing all the pertinent transformations (i.e.

head-motion transform matrices, susceptibility distortion correction when available, and

co-registrations to anatomical and output spaces). Gridded (volumetric) resamplings were

performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation to
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minimize the smoothing effects of other kernels 145. Non-gridded (surface) resamplings

were performed using mri_vol2surf (FreeSurfer). First, a reference volume and its

skull-stripped version were generated using a custom methodology of fMRIPrep. BOLD

runs were slice-time corrected using 3dTshift from AFNI 20160207 139. The BOLD reference

was then co-registered to the T1w reference using bbregister (FreeSurfer) which implements

boundary-based registration 141. Co-registration was configured with six degrees of

freedom. The BOLD time-series (including slice-timing correction when applied) were

resampled onto their original, native space by applying the transforms to correct for

head-motion. These resampled BOLD time-series will be referred to as preprocessed BOLD

in original space, or just preprocessed BOLD. The BOLD time-series were resampled onto

the following surfaces (FreeSurfer reconstruction nomenclature): fsaverage, fsnative. The

BOLD time-series were also resampled into standard space, generating a preprocessed

BOLD run in MNI152NLin2009cAsym space.

Many internal operations of fMRIPrep use Nilearn 0.6.2 146, mostly within the functional

processing workflow. For more details of the pipeline, see the section corresponding to

workflows in fMRIPrep’s documentation.

fMRI analyses

The main goal of our fMRI analyses was to get a trialwise estimate of the fidelity of the

representation of payoff magnitudes in the numerical parietal cortex50. Following earlier

work50,52,53, we used an encoding/decoding-modelling approach, where we inverted an

encoding model that describes how a voxel responds to specific stimulus magnitude𝑖 𝑠

in a Bayesian framework, by extending the encoding model to a multivariate𝑓(𝑠)→𝑥
𝑖

likelihood function using a multivariate t-distribution: with𝑝(𝑋|𝑠) [𝑥
1
,  ..,  𝑥

𝑛
] ~ 𝑓

1..𝑛
(𝑠) + ϵ

, where is the residual covariance and is the degrees-of-freedom of theϵ ~ 𝑡(0,  Σ,  𝑑) Σ 𝑑

t-distribution. Using an explicit likelihood function allows us to decode from trial-to-trial

what was the presented payoff magnitude, as well as the fidelity of the neural response. For

every trial, we test the consistency of the BOLD activation pattern for all possible

numerosities. The fidelity of the neural response was operationalised as the dispersion

(standard deviation) of the decoded posterior. Loosely speaking, the posterior will be less

dispersed when the BOLD responses of many voxels agree with a small set of numerosities.

When the amplitude of the response across voxels is smaller and/or they are not consistent
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with the same numerosities, the posterior will be more dispersed, as the decoder is less

certain about which stimulus was presented. We postulate, as other have done before52,53,

that the uncertainty of our decoding of the presented stimulus is related to the fidelity of the

neural representation of that stimulus.

The main fMRI analysis can roughly be split up in the following steps: 1) Fit a single-trial

GLM to estimate trialwise measures of the response amplitude across voxels 2) Fit a

numerical receptive field model54 to the response, 3) Fit a multivarite noise model to the

residuals of the nPRF model in a leave-one-run-out cross-validation scheme53 4) Obtain a

posterior estimate of the payoffs magnitudes of unseen data using the noise model and an

inverted nPRF model.

Single trial estimates

We used the GLMSingle Python package147 to obtain single-trial BOLD estimates. Briefly,

the GLMSingle package uses cross-validation to do model selection over GLMs with a) a

library of different hemodynamic response functions b) different L2-regularisation

parameters to shrink the single trial estimates, combating the issue of correlated single trial

regressors148. c) GLMSingle also obtains GLMDenoise149 regressors based on the first n

PCA components in a set of noise voxels. Noise voxels are defined as having low explained

variance in the task-based GLM. The number of PCA components is selected via

cross-validation.

As input to GLMSingle, we used both the 24 first and 24 second payoff presentations per

run. For the second payoff pesentations, we modeled all trials with the same numerosity as

being in the same condition, to aid GLMSingle with cross-validation (similar numerosities

should have similar responses). After extensive analysis piloting, we chose to not include

any additional confound regressors (e.g. motion parameters, RETROICOR parameters or

aCompCorr regressros) in addition to the GLMDenoise confound regressors, as additional

regressors did not lead to robustly increased (or even decreased) decoding accuracy and

GLMDenoise. This is in line with earlier work on GLMDenoise149 and the related aCompCorr

approach143.

Numerical receptive field modelling

We fitted a numerical receptive field model to all voxels in the brain, for each session

separately (so using 192 single trial estimates). The method is described in detail
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elsewhere50,54, so we only briefly describe it here. First, we estimate the mean , standardµ

deviation , amplitude and baseline of a log-normal receptive field for every voxel in theσ 𝐴 𝐵

brain separately, to predict the BOLD response of these voxels to different numerosities.

𝑓
𝑖
(𝑥) = 𝐵

𝑖
 + 𝐴

𝑖
 exp  (− (log 𝑥 −  (log  

µ
𝑖

1+σ
𝑖
2/µ

𝑖
2 )

2

/ (2 log(1 + σ
𝑖
2/µ

𝑖
 ))

The second part of this equation is a parameterisation of the log-normal probability density

function where and are the mean and standard deviation of the distribution in naturalµ σ

space. Although this parameterisation is somewhat exotic, it is highly useful when plotting

the estimated preferred numerosities and their dispersion, for example on the cortical

surface.

We first fit the model by using a grid-search: We correlatethe single trial estimates for the

first payoff stimulus presentation with the predictions of a large grid of 60 -s between 5µ

and 80 and 60 -s between 5 and 40. We then estimate and linear least-squares on theσ 𝐼 𝐴

best-correlating and -parameters. Finally, we used gradient descent150 to refineµ σ

parameters further. The explained variance for each voxel is then transformed to𝑅2

fsaverage-surface space to compare across participants. We compared the -maps to an𝑅2

ROI of the (right) numerical parietal cortex (rNPC) in fsaverage we drew for an earlier study.

We observed that the -maps were tightly related to the (see Figure 2) and therefore chose𝑅2

to use this rNPC-mask in all follow-up analyses. The rNPC mask was transformed from

fsaverage-surface space to individual anatomical space using neuropythy

(https://github.com/noahbenson/neuropythy).

Voxel selection

One key methodological choice in the encoding/decoding-framework is which voxels to

include in the decoding step. In earlier work we chose an arbitrary number of voxels/surface

vertices50. Although the number of voxels seemed to make little difference in individual

decoding accuracy, it remains an arbitrary choice. Here, we chose to use a nested

cross-validation scheme to select the number of voxels for each participants/run in a

principled way. The method takes into account both that noisy voxels should have an

out-of-sample lower than 0 and different brains have different sizes. Specifically, when𝑅2

decoding run (out of a total of 8 runs per session), we would fit the nPRF model on all𝑖

voxels within the NPC mask on (6-run) subsets of the remaining 7 runs, by leaving another

run out . Then, for each of these nested folds , we calculated the out-of-sample𝑗 𝑅
_𝑖_𝑗

𝑅
_𝑖_𝑗

𝑅2
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on run for each voxel. Thus, for each voxel and each decoded test run , we had 6𝑗 𝑖

out-of-sample , which we averaged over. For decoding run , we would only use voxels𝑅2𝑠 𝑖

that had a mean out-of-sample larger than 0.𝑅2

Decoding

After voxel selection, we used a leave-one-run-out cross validation scheme where the nPRF

model was fitted to all runs but the test run, after which also a multivariate noise model was

fitted to the residual signals. Specifically, we fitted the following covariance matrix:

,Σ = ρττ𝑇 + (1 − ρ)𝐼 ∘ττ𝑇 + σ𝑊𝑊𝑇

as well as the degrees-of-freedom of a 0-centred, multivariate t-distribution. Briefly, is aτ

vector as its length the number of voxels ( ) in the ROI. It pertains to the standard deviation𝑛

of the residuals of each voxel. Thus, determines to which extent all voxels correlate withρ

each other ( is the covariance matrix of perfectly correlated voxels, whereasττ𝑇 𝐼 ∘ττ𝑇

corresponds to a perfectly diagonal matrix/spherical covariance). is a square matrix of𝑊

. Each element is the product of the receptive fields of voxels and across𝑛 ×𝑛 𝑊
𝑖,𝑗

𝑖 𝑗

stimulus space ( with being the entire stimulus space . Thus, the𝑓
𝑖
(𝑆) 𝑓

𝑗
(𝑆)𝑇 𝑆 [5,  6,  ..,  112]

free scalar parameter determines to which extent voxels with overlapping receptive fieldsσ

have more correlated noise.

Once the noise model is fitted, we can now determine a likelihood function for any

multivariate BOLD pattern and for any numerical stimulus :𝑋 𝑠

𝑝(𝑋|𝑠) = 𝑡(𝑋 −  [𝑓
1
,  𝑓

2
,  ...,  𝑓

𝑛
(𝑠)],  Σ,  𝑑)

Since we assume a flat prior on all integers between 5 and 112, we can now just evaluate

this likelihood on all these integers and normalize the resulting probability mass function

(pdf) to integrate to 1. We take the expected value of this pdf to be our estimate of the

presented stimulus. We take the standard deviation of the pdf as a measure of the fidelity of

neural coding. This standard deviation is used to split up trial within a participants and

payoff-numerosity for the probit model and as input to the PMCM as a linear regressor on

all the model parameters.

Code availability

All the code used in this package can be found online on github:
https://github.com/Gilles86/risk_experiment/
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Our computational cognitive models are implemented in the open-source Python library
bauer
https://github.com/ruffgroup/bauer/tree/main

The used nPRF model and decoding software algorithms are implemented in the
open-source Python library braincoder
https://braincoder-devs.github.io/
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