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ABSTRACT  
Adaptive behaviour requires the selection of relevant, and the ignoring of irrelevant visual 
information. Previous work has shown that prior information about target (i.e., relevant) and 
non-target (i.e., irrelevant) objects facilitates such selection, presumably by enabling observers 
to create a working memory template for or against such objects. Using a cued visual search 
task, here we aimed to investigate whether, and how, target and non-target templates differ in 
terms of neural representation, as measured through fMRI activity patterns. Two hypotheses 
were tested: (1) while target representations are activated, non-target representations are 
suppressed prior to search, and thus these representations differ, and (2) target and non-target 
templates share similar initial representations but involve different control signals in 
anticipation of, or upon encountering the search display. Behaviourally, both target and non- 
target cues facilitated search compared to baseline. Using multivariate pattern and 
representational similarity analyses, the findings revealed little support for the suppression 
hypothesis. Posterior brain regions primarily coded for the category content of the template 
and did so similarly for target and non-target information. Frontal cortical areas, particularly the 
lateral prefrontal cortex and frontal eye fields, instead showed sensitivity to the status of the 
template, regardless of the object category it belonged to. These results are most consistent 
with the hypothesis that prior to selection, target and non-target information are represented 
similarly in terms of content, but differ in terms of the associated control signals.
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A fundamental obstacle in being able to interact with 
the environment in a meaningful way is the sheer 
amount of complex visual stimulation that is con-
stantly hitting the retina. For adaptive behaviour, 
mechanisms of attention selectively prioritize certain 
information for more in-depth processing above 
and beyond other information. Such selectivity 
becomes evident in for instance visual search tasks, 
in which observers look for a relevant (target) object 
while trying to ignore irrelevant (non-target) objects. 
For example, when looking for the car key fob on 
the kitchen counter, one might prioritize small black 
objects over other, irrelevant objects such as a 
coffee mug, the note your partner left for you, and a 
sandwich leftover.

A large body of research has shown that biasing 
selection towards target features occurs already in 
advance, prior to the onset of to-be-searched visual 
information (e.g., Battistoni et al., 2017; Folk et al., 
1992; Olmos-Solis et al., 2018; van Loon et al., 2017). 
Indeed, in line with some of the most influential the-
ories of attention (e.g., Bundesen, 1990; Desimone & 
Duncan, 1995; Duncan & Humphreys, 1989), represen-
tations of target features have been found in individual 
as well as across populations of neurons already prior 
to presentation of the target stimulus (e.g., Chawla 
et al., 1999; Chelazzi et al., 1993, 1998; Giesbrecht 
et al., 2006; Peelen & Kastner, 2011; Stokes et al., 
2009). By their functional role, such target templates, 
as they have been referred to, must be flexible in 
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nature, in that they are specifically tuned to the sought- 
for features at hand, and maintained until no longer 
necessary (Gayet et al., 2017; Grubert et al., 2017; 
Olivers et al., 2011; Olivers & Eimer, 2011). Mechanisti-
cally, such target templates have been hypothesized 
to pre-activate or pre-sensitize the very same neurons 
that code for the target features when presented as a 
stimulus, thus facilitating its processing and prioritizing 
it for selection (e.g., Desimone & Duncan, 1995).

While the existence of template representations that 
proactively and flexibly enhance target objects (or 
target-related features) is widely accepted, there is an 
ongoing debate about whether such templates can 
also be set up to proactively, and flexibly, ignore irrele-
vant objects or their features (see also Chelazzi et al., 
2019, for a recent review). Such “rejection templates” 
or “non-target templates” (the latter of which will be 
used from here on) would in principle be beneficial 
to performance when there is useful information 
about non-target features prior to search.1 Evidence 
from behavioural studies indicates that observers can 
indeed effectively and flexibly use prior information 
on what feature to ignore in a subsequent search 
display, as search becomes more efficient with than 
without such information (e.g., Carlisle & Nitka, 2019; 
Arita et al., 2012; Conci et al., 2019; Woodman & Luck, 
2007; Zhang et al., 2020) – although benefits tend to 
be smaller than when target information is provided.

A crucial question is then how such efficiency is 
achieved from non-target templates. A first hypoth-
esis states that providing non-target information 
results in selective suppression of its neural represen-
tation already in advance (cf. Arita et al., 2012; 
Woodman & Luck, 2007). Depending on the strength 
of the suppression, non-target templates may 
become either attenuated compared to target tem-
plates (cf. Reeder et al., 2018), silent (cf. Olivers 
et al., 2011), or even be suppressed below baseline 
(cf. van Loon et al., 2018; Wan et al., 2020; Yu et al., 
2020). Under these possibilities, corresponding pat-
terns of brain activity for non-target templates 
would then be expected to respectively show a 
weaker correlation, zero correlation, or an anti-corre-
lation with target templates. In all cases, the content 
representation of the non-target template differs in 
terms of activity patterns from that for the target tem-
plate. We will collectively refer to these possibilities as 
the prior suppression hypothesis. The main alternative 
hypothesis is that non-target templates are, in terms 

of both content and strength, represented in exactly 
the same way as regular target templates, but come 
with different control operations attached. Such a 
control operation could be a distractor-specific plan 
or intention to reactively deal with a distractor once 
it is actually encountered in the search display (cf. 
Gaspelin & Luck, 2018; Moher & Egeth, 2012; Sawaki 
& Luck, 2013). It could also represent an overall 
signal gating the entire perceptual input at search 
onset, or gating the overall speed of responding to 
that input, in order to prevent too rapid and therefore 
inaccurate orienting towards distractors, and let top- 
down processes prevail. For example, in their EEG 
study, de Vries et al. (2019) found little difference in 
how target- versus distractor-specific representations 
were prioritized before the search display, as reflected 
in lateralized posterior alpha power. Instead, sub-
sequent eye movement activity during the search 
itself showed that participants first attended to the 
distractor, before turning away, in line with what 
Moher and Egeth (2012) proposed. However, com-
pared to target information, providing distractor 
information did result in modulations control- 
related signals (overall posterior alpha as well as mid-
frontal theta signals), signals that were predictive of 
how strongly both targets and distractors in the 
display then captured attention. De Vries et al. there-
fore hypothesized that this activity represented 
central control signals which generally gated the per-
ceptual input at search display onset, thus preventing 
attentional capture in general, rather than in a distrac-
tor-specific manner (see also Noonan et al., 2018; 
Rajsic et al., 2020; van Zoest et al., 2021 for similar 
findings and accounts). Finally, control operations 
could represent a plan to recode the non-target infor-
mation into target information once the display has 
appeared. For example, Beck and Hollingworth 
(2015) as well as Becker et al. (2015) argued that 
prior information on what will be irrelevant can be 
used to derive what is relevant as soon as the 
search display appears, allowing for a recoding of 
attentional priorities without the need for an inhibi-
tory template. In the present study, we will not be 
able to discriminate between these versions, and we 
will collectively refer to them as the control hypothesis. 
For all cases, this hypothesis predicts that the tem-
plate’s content representation is not affected as 
such, and thus this content representation should 
not differ for target and non-target templates. 
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Instead, such control signals would be expected to 
indicate only the status of the information – that is, 
is this going to be a prospective target or a non- 
target – and such signals would therefore be expected 
to emerge in domain-general executive control net-
works involving frontal and/or parietal cortex.

Two earlier studies used fMRI to compare target 
and non-target templates prior to the search 
(Reeder et al., 2018; Reeder et al., 2017). In these 
studies, participants were required to identify the 
orientation of a target letter appearing among mul-
tiple pseudo-letters. Half of these stimuli appeared 
inside disks of a particular colour, while the other 
half appeared in disks of another colour. Crucially, 
participants were given a cue before search onset 
which either indicated the colour in which the 
target letter would appear (target cue), the colour 
in which it would not appear (non-target cue) or a 
colour that would not be present in the search 
display (neutral cue). At the behavioural level, 
Reeder and colleagues observed that both target 
and non-target templates benefitted search, with 
target templates being the most effective. Univari-
ate analysis of the neural activity leading up to 
the search showed an overall lower BOLD signal in 
response to non-target cues relative to the neutral 
cue baseline in early visual areas (V1–V3), while 
target cues showed a larger BOLD response relative 
to neutral. Additionally, and probably as a direct 
consequence of the overall reduced BOLD signal, a 
representational similarity analysis (Kriegeskorte 
et al., 2008) of the colour representations in the 
early visual cortex revealed that target templates 
were represented more distinctly from neutral 
feature representations, while no such difference 
was found when comparing non-target and 
neutral representations. Such less pronounced 
activity for nontargets would be consistent with 
prior suppression. However, given that non-target 
cues are generally less effective than target cues, 
the reduced overall activity may also be due to a 
reduced number of trials on which participants are 
willing to activate a representation that they may 
experience as less effective for the task. The case 
for truly inhibitory non-target templates would be 
stronger if we were to find patterns of activity 
that are suppressed below the baseline and that 
would thus anti-correlate with target templates. 
This is what we set out to test in the current study.

Here we re-addressed the question of how the 
functional advantage of using non-target templates 
in visual search manifests itself on a neural level, 
using a multivariate analysis approach in combination 
with a stimulus set consisting of different object cat-
egories, and for which previous studies had observed 
goal-dependent changes in representation (Harel 
et al., 2014; Lee et al., 2013; van Loon et al., 2018). 
To differentiate between the prior suppression and 
control hypotheses, we asked participants to 
perform a difficult search task for a T-shaped symbol 
among L-shaped symbols, which were presented on 
top of an array of objects drawn from one of three 
different object categories (cow, dresser or skate), 
while we measured brain activity using fMRI. We 
chose object categories over colours (as used by 
Reeder et al., 2018; Reeder et al., 2017), because multi-
variate decoding of object categories tends to be 
more reliable than of decoding colour categories, 
therefore increasing the chances of uncovering 
potentially subtle differences (see also Seidl et al., 
2012). Moreover, other work has shown that 
changes in mnemonic representational patterns can 
be found for these stimuli depending on the task 
goal (Harel et al., 2014; Lee et al., 2013; van Loon 
et al., 2018). The procedure is illustrated in Figure 1
(A). Importantly, at the beginning of each trial the par-
ticipants received information in the form of a tem-
plate object meant to guide their search strategy. 
For this purpose, the template object was followed 
by either one of four different cues: a target, non- 
target, neutral and drop cue. In the target cue con-
dition, the search target would always appear on an 
instance of a memorized object. In the non-target 
cue condition, participants were informed that while 
instances of the memorized object would be 
present in the search display, the target would cer-
tainly not appear on any of them. In the neutral cue 
condition, participants were informed that instances 
of the memorized object would be present in the 
search display but not whether they would contain 
the target (i.e., be relevant) or only distractors (i.e., 
be irrelevant). This information was only relayed at 
search onset, through a second cue, which could be 
target or non-target as per above. In other words, in 
this condition, it was still useful for participants to 
memorize the object, but during the delay, it was 
not yet clear how to use it. Finally, in the drop cue con-
dition, participants were informed that the 
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memorized object would not appear in the search 
display and thus could be dropped from memory 
altogether. The latter two conditions served as base-
line conditions relative to which we exploratively 
compared the representational status of target and 
non-target templates, to see if non-target templates 
actually involve below-baseline activity (MacLeod, 

2007). However, the main comparison of interest 
was the one between target and non-target tem-
plates. Multivariate pattern activity was then taken 
from early visual areas (V1-V3), lateral occipital 
cortex (LOC), posterior fusiform area (pF), intraparietal 
sulcus (IPS), frontal eye fields (FEF) and lateral prefron-
tal cortex (lPFC) to assess where and how the content 

Figure 1. (A) Trial sequences of the experiment. On each trial, participants performed a search task for a T-shaped symbol among 
L-shaped symbols presented on top of an array of greyscale objects. These objects were drawn from one of three different object 
categories (cow, dresser or skate). Prior to the search display onset, participants received information in the form of a template 
object meant to guide their search strategy. The content of the information was conveyed by means of a cue presented shortly 
after the template object and was systematically manipulated creating four different cue conditions: in the target cue condition, 
the search target would always appear on the memorized object. In the non-target cue condition, participants were informed that 
while the memorized object would be present in the search display the target would certainly not appear on it. In the neutral cue 
condition, participants were informed that the memorized object would be present in the search display but that only a second 
cue, appearing at search onset, would indicate whether the target would appear inside the memorized object (i.e., target cue) or 
not (i.e., non-target cue). Finally, in the drop cue condition, participants were informed that the memorized object would not 
appear in the search display and thus could be dropped from memory. (B) Behavioral results of the behavioral session. Average 
response time for each cue condition. (C) Behavioural results of the fMRI session. Average response time for each cue condition. 
Error bars here and in all other figures indicate standard error of the mean.
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of the template (i.e., its object category membership), 
but also the status of the template (i.e., whether it is 
a target, non-target, neutral or dropped template) is 
represented. The choice of the different ROIs was 
motivated by previous studies which indicated these 
areas as functionally important to the maintenance 
of visual information as well as task-specific modu-
lations thereof, including planning of behaviour and 
dealing with distractor interference (Baeck et al., 
2013; Barbey et al., 2013; Bettencourt & Xu, 2016; Chris-
tophel et al., 2018; Cosman et al., 2018; Grill-Spector et 
al., 2001; Lee et al., 2013; van Loon et al., 2018; Lorenc 
et al., 2018; Mansouri et al., 2017; Marini et al., 2016; 
Olmos-Solis et al., 2021; Rademaker et al., 2019).

There were two main analyses of interest. First, cat-
egory decoding analyses focused on the content of the 
template representation, and whether such represen-
tation differed for target versus non-target templates. 
If nontargets are represented through inhibitory tem-
plates we should observe at least much weaker decod-
ing and reduced similarity for non-target templates 
compared to target templates, but could even 
observe reversals of representation if object-selective 
voxels are suppressed below their usual baseline. 
Second, status decoding ignores the object category, 
but provides a measure of how sensitive a brain 
region is to the status of the template per se – that 
is, whether it is a target or a non-target. Because this 
decoding analysis by definition generalizes across cat-
egories, it is more likely to reflect general control 
signals, rather than stimulus-specific modulations.

Materials and methods

Participants

Data were initially obtained from twenty-four volun-
teers. The sample size was predetermined on the 
basis of van Loon et al. (2018). Data from two partici-
pants were excluded from the analysis. For one of 
these participants, data collection was aborted pre-
maturely due to the experience of a high degree of 
discomfort in the MRI scanner. Another participant 
was excluded due to excessive movement through-
out the entire scanning session (framewise displace-
ment: maximum regularly around 23 and run 
averages around 6). This left a sample of 22 partici-
pants (13 female, M = 24.8 ± SD = 4.4 years old). All 
participants had reported normal or corrected-to- 

normal vision and were naïve as to the purpose of 
this study. All participants gave written consent 
prior to the start of the experiment. The study was 
approved by the Scientific and Ethics Review Board 
of the Faculty of Behavioural and Movement Sciences 
of the Vrije Universiteit Amsterdam (The Netherlands).

Stimuli

Stimulus presentation was controlled with OpenSe-
same (Mathôt et al., 2012) and stimuli were always 
presented against a uniform grey background (RGB- 
values: 170, 170, 170). Participants were shown real- 
world objects in the form of greyscale photographs 
depicting one of four exemplars from one of three 
object categories (cow, dresser, or roller skate; 
approximately 2.43° by 2.43° visual angle). These 
object categories were selected to have maximal dis-
similarity in representational space (see Harel et al., 
2014). In the search display, each of the object pic-
tures had a circular recess in its centre (black outline 
with 0.2° radius) that contained either a T- or L- 
shaped symbol. The T-shaped symbol only appeared 
exactly once in the search display and was rotated 
either 90° clockwise or counterclockwise from vertical, 
while the remaining objects contained L-shaped 
symbols in one of four rotations (0°, 90°, 180°, and 
270°). All letter-shaped symbols were made up of 
two equally long line segments (0.21°). All pictures 
in the search display were presented on an imaginary 
circle at an equal distance (3° radius centre-to-centre). 
The locations of all eight pictures and their T- or L- 
shaped symbol were randomized. Depending on the 
condition, the cue display contained either a “+”, “-“, 
“O” or “X” symbol, respectively indicating target, 
non-target, neutral, and drop. Since these symbolic 
cues were difficult to match in pixel size without sig-
nificantly compromising their overall comparability in 
other aspects (such as size), each cue was shown 
inside a rectangle (1.33° by 1.33°) to minimize the rela-
tive influence of the difference in pixels on the BOLD 
signal. The very same cues also appeared in the centre 
of the search display. In between displays, a black 
fixation dot was visible at the centre of the display.

Procedure and design

Figure 1 shows the trial sequence. Each trial contained 
a template, cue and search display. A trial started with 
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the 800 ms long presentation of the to-be-memorized 
template followed by a fixation screen for another 
800 ms. This template was a picture of an exemplar 
taken from one of the object categories (cow, 
dresser, skate). Participants were instructed to mem-
orize the template as veridically as possible and to 
avoid using semantic or verbal labels. To promote 
this, it was insufficient for participants to simply mem-
orize the object category, because all objects in the 
search display would be of the same category. 
Instead, a specific exemplar had to be remembered 
for the template to be effective. Then, following the 
presentation of the template, a cue was shown for 
500 ms which informed participants about how the 
template should be used in the upcoming search. 
The presentation of the cue was followed by a delay 
period of 7700 ms in which only a central fixation 
dot was visible. Finally, the search display came on 
for 2800 ms and was followed by an intertrial interval 
of another 7000 ms. The search display always con-
tained eight search elements all of which were pic-
tures of one object category (cow, dresser or skate) 
and each contained a rotated L-shaped object in the 
centre, except for the target, which contained a 
rotated T. There were always four pictures of one 
exemplar and four pictures of another exemplar of 
the designated object category. Participants were 
required to indicate the rotation of the T-shaped 
target by pressing one of two buttons using separate 
hands for each of them. The response could be given 
even after the search display disappeared (up until 
3500 ms after search display onset). Response time 
and accuracy feedback were given at the end of 
each block, at which point participants could also 
take a break.

The critical design feature was the type of cue that 
was presented prior to the delay period. There were 
four different cue types: a target, a non-target, a 
neutral and a drop cue. A target cue indicated that 
the target in the search display would appear inside 
a picture of the shown exemplar, while different pic-
tures would only contain distractors. This effectively 
allowed participants to restrict search to four of the 
eight elements in the search display, thus making 
the search significantly easier. In contrast, a 
non-target cue indicated that the search target 
would definitely not appear inside a picture of the 
shown exemplar, but always be inside a picture of 
another (as of yet unknown) exemplar. The two 

remaining cue conditions (neutral and drop) func-
tioned as baseline conditions. A neutral cue indicated 
that the cue instructions would be given at the start of 
the search, in which case the cue type could only be a 
target or non-target cue. Finally, a drop cue indicated 
that not only the exemplar but the entire object cat-
egory would not be present in the search display. 
This allowed participants to altogether drop the tem-
plate from memory entirely as it would, if anything, be 
detrimental to maintain it. In other words, while the 
neutral condition functioned as a baseline in which 
category-specific information (e.g., speckled cow) 
was maintained without status-specific information 
(target or non-target), the drop condition functioned 
as a zero-maintenance baseline in which no category- 
specific nor status-specific information was required 
to be maintained.

Each participant performed the same task twice, 
once in a behavioural session outside the scanner, 
and once in an fMRI session 1–2 days later. In the 
behavioural session, participants did eight blocks of 
24 trials each. This session allowed participants to 
become well practiced on the task and thus 
reduced the influence of fatigue and training effects 
during the fMRI session. To promote learning, partici-
pants received trial-by-trial feedback during the 
behavioural session by briefly turning the fixation 
dot white following an incorrect or timed-out 
response. All of the critical task parameters were 
kept the same between sessions. That is, during the 
fMRI session, participants performed another 192 
trials with 24 trials in each of the eight blocks. Here 
trial-based feedback was omitted. In each block of 
each session, every object category was equally 
often the object category of the template and every 
cue condition was tested equally often. The order of 
conditions was randomized within blocks. Across all 
trials, each exemplar of each category within each 
cue condition was tested four times.

Apparatus and functional MRI acquisition

Functional magnetic resonance imaging was realized 
using a 3 T Philips MRI scanner. Prior to the fMRI 
session, a high-resolution 3D T1-weighted anatomical 
scan (repetition time [TR] = 8.196 ms, TE = 3.75 ms, 
flip angle = 90°, FOV = 240 mm × 256 mm × 250 mm, 
slice thickness = 1 mm, inversion time 950 ms, voxel 
size = 1 mm3) was obtained for every participant. 
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During the experiment, functional images were 
recorded using a T2*-weighted single-shot gradient 
echo-planar images sequence (whole-brain coverage, 
TR = 700 ms, TE = 30 ms, flip angle = 8°, FOV =  
216 mm × 130 mm × 216 mm, slice gap = .27 mm, 
slice thickness = 2.7 mm, voxel size = 2.7 mm3, mulit-
band factor = 4). A Cambridge Research Systems Live-
Track AV Eye-tracker was used to monitor fixation 
during the task, particularly during the search, for all 
except two participants in which the eye-tracker 
malfunctioned.

fMRI data analysis

All analysis scripts can be found on GitHub (https:// 
github.com/MichlF/science_projects/tree/master/No 
DifferenceInPriorRepresentationsOfWhatToAttendAnd 
WhatToIgnore).

Preprocessing
fMRI data were preprocessed using FMRIPrep 
(Esteban et al., 2019) a Nipype (Gorgolewski et al., 
2011) based tool. Each T1w volume was corrected 
for intensity non-uniformity using N4BiasFieldCorrec-
tion v2.1.0 (Tustison et al., 2010) and skull-stripped 
using antsBrainExtraction.sh (using the OASIS tem-
plate). Brain surfaces were reconstructed using 
recon-all from FreeSurfer v6.0.0 (Dale et al., 1999), 
and the brain mask estimated previously was 
refined with a custom variation of the method to 
reconcile ANTs-derived and FreeSurfer-derived seg-
mentations of the cortical grey-matter of Mind- 
boggle (Klein et al., 2017). Spatial normalization to 
the ICBM 152 Nonlinear Asymmetrical template 
version 2009c (Fonov et al., 2009) was performed 
through nonlinear registration with the antsRegistra-
tion tool of ANTs v2.1.0 (Avants et al., 2008), using 
brain-extracted versions of both T1w volume and 
template. Brain tissue segmentation of cerebrospinal 
fluid (CSF), white-matter (WM) and grey-matter (GM) 
was performed on the brain-extracted T1w using 
fast in FSL v5.0.9 (Zhang et al., 2001).

Functional data were slice time corrected using 
3dTshift (Cox, 1996) and motion corrected using 
mcflirt (FSL v5.0.9; Jenkinson et al., 2002). Distortion 
correction was performed using an implementation 
of the PEB/PEPOLAR (phase-encoding based / PE- 
POLARity) technique. This was followed by co-regis-
tration to the corresponding T1w using boundary- 

based registration with nine degrees of freedom 
using bbregister (FreeSurfer v6.0.0). Motion correcting 
transformations, field distortion correcting warp, 
BOLD-to-T1w transformation and T1w-to-template 
(MNI) warp were concatenated and applied in a 
single step using antsApplyTransforms (ANTs v2.1.0) 
using Lanczos interpolation.

Physiological noise regressors were extracted by 
applying CompCor (Behzadi et al., 2007). Principal 
components were estimated for anatomical 
CompCor (aCompCor). A mask to exclude signals 
with cortical origin was obtained by eroding the 
brain mask, ensuring it only contained subcortical 
structures. For aCompCor, six components were cal-
culated within the intersection of the subcortical 
mask and the union of CSF and WM masks was calcu-
lated in T1w space, after their projection to the native 
space of each functional run. Frame-wise displace-
ment (Power et al., 2014) was calculated for each 
functional run using the implementation of Nipype. 
Many internal operations of FMRIPrep use Nilearn 
(Abraham et al., 2014), principally within the BOLD- 
processing work-flow. For more details on the prepro-
cessing pipeline, see https://fmriprep.readthedocs.io/ 
en/1.2.0/workflows.html.

Anatomical regions of interest (ROIs)
Analyses were confined to six anatomically defined 
brain regions that have previously been found to be 
involved in attention as well as the maintenance 
and manipulation of VWM content. These regions 
are the visual cortex (VC), lateral occipital cortex 
(LOC), the intraparietal sulcus (IPS), posterior fusiform 
gyrus (pF), the frontal eye fields (FEF) and the lateral 
prefrontal cortex (lPFC) which is typically defined as 
consisting of the ventrolateral prefrontal cortex 
(vlPFC) and dorsolateral prefrontal cortex (dlPFC). 
More specifically, VC comprised striate (V1) and extra-
striate (V2 and V3) areas which were defined as Brod-
mann area (BA) 17 through 19. Both LOC and IPS were 
ROIs taken from the MSDL atlas (Varoquaux et al., 
2011). For pF, the temporal occipital fusiform cortex 
was extracted from the Harvard-Oxford Structural 
Atlas of the FSL package (similar to Olmos-Solis et 
al., 2021 and van Loon et al., 2018). FEF were 
defined as BA 8 (e.g., Paus, 1996). Similarly, regions 
vlPFC and dlPFC were defined based on their associ-
ated BAs. Specifically, vlPFC comprised BA 44, 45 
and 47, while dlPFC comprised BA 8, 9, and 46. BAs 
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were extracted from the Talairach atlas using Nilearn 
(Lancaster et al., 2000) and each ROI mask was 
resampled into MNI space before being applied on 
a per-participant level.

Deconvolution
To estimate the average fMRI response time course, 
we ran a deconvolution analysis using nideconv (de 
Hollander & Knapen, 2018). For each subject and 
each trial, a general linear model using its closed- 
form solution ordinary least squares (OLS) was fitted 
to the data with every TR (.7 secs each, 28 in total) 
as a regression variable. The design we employed 
here used very long intertrial intervals (7 seconds), 
and the time between subsequent cue periods was 
11.4 seconds. Therefore, the overlap in BOLD 
responses of corresponding within-trial events was 
minimized, precluding issues of collinearity of the 
responses (Mumford et al., 2012; Prince et al., 2022). 
Nuisance regressors included the temporal deriva-
tives, motion-related parameters (three regressors 
each for translation and rotation), framewise displace-
ment, and six aCompCorr regressors. All regressors 
were convolved with a Fourier basis function set con-
sisting of an intercept and six sine-cosine pairs of 
increasing frequency. With this method, we derived 
vectors containing the t-value per voxel in each ROI 
for every participant, run, experimental condition 
(target, non-target, neutral, and drop), category 
exemplar (cow, dresser, and skate; four exemplars of 
each) and TR in every ROI separately. As such, each 
of these vectors represents the spatial activity 
pattern evoked at a given TR for a given trial in a 
given ROI.

Category and status decoding
To shed light on the question whether the status 
information of the cue (target, non-target, neutral or 
drop) affected the neural representations of object 
categories and/or the status itself was reliably rep-
resented in the brain, we further analysed the multi- 
voxel patterns. We conducted three types of decod-
ing: the first two types concerned content decoding, 
where we trained and tested the classifier on the 
three object type categories. In one version, within- 
condition category decoding, we decoded the object 
category information within each status separately 
(i.e., target, non-target, neutral, dropped). In other 
words, classifiers were trained and tested on the 

same status condition (e.g., cows in the target con-
dition vs. dressers in the target condition). For the 
cross-condition category decoding, we trained the 
classifier on object categories within one status con-
dition (e.g., non-target), but then tested the classifier 
on another status condition (e.g., target), and vice 
versa (e.g., cows in the target condition vs. dressers 
in the non-target condition). This was done for all 
six cue condition combinations (drop vs. non-target, 
drop vs. neutral, drop vs. target, neutral vs. non- 
target, non-target vs. target and neutral vs. target). 
This approach allowed us to assess if category infor-
mation was stored in the same format (predicting 
above-chance classification), the opposite or anti-cor-
related format (predicting below-chance classifi-
cation), or uncorrelated formats (predicting no 
correlation and thus classification at chance) for 
each of these combinations. Finally, the third type, 
status decoding, assessed which areas were sensitive 
to status information per se, regardless of category. 
Here, the classifier was trained and tested on the 
status labels only. We decoded each of the cue con-
dition combinations (e.g., non-target vs. target) separ-
ately to avoid that a single condition would entirely 
drive decoding performance for all four status con-
ditions (i.e., one vs. all other three conditions).

For all decoding schemes, supervised learning 
models were used by training ridge regression clas-
sifiers to distinguish the output values (i.e., model 
targets) using scikit-learn’s ridge algorithm (Pedre-
gosa et al., 2011). Ridge regression is a regression 
model that uses linear least squares with L2 regulariz-
ation. In essence, it computes a weighted combi-
nation of voxel activity values and by adjusting the 
per-voxel regression weights it minimizes the discre-
pancy between the predicted output value and the 
correct output value. By imposing a penalty on the 
size of the coefficients, this method is particularly 
robust against multicollinearity which is a phenom-
enon that is commonly observed in multi-voxel pat-
terns and would otherwise lead to high 
susceptibility of random error in classic OLS methods.

For within-condition category decoding as well as 
status decoding, we evaluated classification perform-
ance with a standard Leave-One-Out cross-validation 
strategy. In other words, the classifier was always 
trained to learn the mapping between the neural pat-
terns and the corresponding category (within-con-
dition decoding) or status labels (status decoding) 
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for all but one run. Then, the classifier was used to 
predict the category or status labels in the remaining, 
for this iteration independent, run. Since this pro-
cedure was repeated for each combination of runs, 
we ended up with eight iterations across which we 
calculated the average to obtain the overall classifi-
cation performance. For cross-condition category 
decoding, the data of the tested condition was 
always independent and we could therefore train 
and test on all runs.

We confined our statistical analyses on the average 
classification performance across nine TRs following 
the analysis approach of van Loon and colleagues 
(Olmos-Solis et al., 2021; van Loon et al., 2018 and 
similar to Lee et al., 2013). Note that since our TR 
differed from these previous studies, we selected 
the TRs that most closely approximated their time 
interval which corresponded to time intervals of 6.3 
secs in the present study. More specifically, we aver-
aged the classification performance across each of 
two separate time intervals which corresponded to 
the fourth to the twelfth TR after cue (cue period) 
and search display onset (search period). Classifi-
cation performance was compared against chance 
level (within- and cross-condition decoding: one 
over three or 33.33% due to the three object cat-
egories; status decoding: one over two or 50% due 
to the comparison between two status conditions) 
using one-sample t-tests (two-tailed). For each con-
dition or combination comparison paired samples 
t-tests were used (two-tailed). If the normality 
assumption was violated (Shapiro–Wilks test), we 
also report Wilcoxon signed-rank tests. Following a 
reviewer’s suggestion we also re-ran our analyses 
using randomizations tests instead of t-tests. This 
generated a very similar pattern of results and no 
different conclusions. We therefore stuck to our orig-
inal analysis plan.

Representational dissimilarity analysis
To explore the representational geometry of the brain 
activity patterns in the different conditions, we 
created a representation dissimilarity matrix (RDM) 
for each TR and each participant (Kriegeskorte et al., 
2008; Kriegeskorte & Kievit, 2013). Each value in 
such an RDM represents the dissimilarity between 
the activity patterns that are associated with two 
different exemplars (except along the matrix diagonal 
where it is associated with the same exemplars and 

dissimilarity is per definition zero). As the distance 
measure, we employed 1-rho (i.e., Spearman’s rank 
correlation coefficient) across all voxels of the given 
ROI. For visualization purposes, we further replaced 
each element of the RDM by its rank in the distri-
bution of all of the RDM’s elements (scaled from 0 
to 1). Thus, the RDM is a 48 × 48 matrix which rep-
resents the ranked pattern dissimilarity among all 
combinations of the four exemplars of each of the 
three categories (cows, dressers, skate) and the four 
different status levels (drop, non-target, neutral, 
target). Individual RDMs were averaged across all 
runs and TRs from the specific interval of interest 
(i.e., cue or search period).

Results

Behaviour

To assess whether the status cues and their associated 
templates were used to aid search performance, we 
submitted RT and response accuracy data to separate 
ANOVAs with cue status as factor (drop, neutral, non- 
target, target) for data from the behavioural and fMRI 
session separately. For the RT analyses all incorrect 
responses were excluded. The ANOVA for the RT in 
the behavioural session showed a significant main 
effect (F(3, 63) = 37.584, p < .001, ηp² = .642). Figure 
1(B) shows that participants searched faster with a 
target or a non-target cue relative to any of the two 
baseline conditions (target vs. drop: t(21) = 6.59, 
p < .001, Cohen’s d = 1.41, neutral vs. target: t(21) =  
10.14, p < .001, d = 2.16, non-target vs. drop: t(21) =  
3.57, p = .002, d = .76, neutral vs. non-target: t(21) =  
6.34, p < .001, d = 1.352). They were also faster in the 
drop condition than in the neutral cue condition 
(t(21) = 3.22, p = .004, d = .69). The relative slow 
responses in the latter condition were likely caused 
by the participants processing another cue at search 
onset (i.e., indicating what to do with the up to 
then neutral cue). Importantly, participants searched 
significantly faster with a target than a non-target 
cue (Wilcoxon Z = 233, p < .001, rb = .84; t(21) = 3.80, 
p = 0.001, d = .81). The ANOVA on accuracy data was 
significant (F(3, 63) = 2.854, p = .044, ηp² = .120). 
While accuracy was high (> 93.6%) in all conditions, 
paired samples t-tests revealed that participants 
were somewhat more accurate on trials with a drop 
cue compared to trials with a non-target cue (96.4% 
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vs. 93.7%, Wilcoxon Z = 96, p = .043, rb = .60; t(21) =  
2.497, p = 0.021, d = .532), with the other conditions 
falling in between.

Similar behavioural results were observed for the 
fMRI session (see Figure 1(C)). The ANOVA on RT 
showed a significant main effect (F(3, 63) = 30.52, 
p < .001, ηp² = .592). Like in the behavioural session, 
participants searched faster with a target or non- 
target cue relative to any of the two baseline con-
ditions (target vs. drop: t(21) = 6.866, p < .001, d =  
1.09, neutral vs. target: t(21) = 8.809, p < .001, d =  
1.88, non-target vs. drop: t(21) = 5.132, p < .001, d =  
1.09, neutral vs. non-target: t(21) = 5.497, p < .001, 
d = 1.17). This time there was no significant difference 
in search speed between both baseline conditions, 
drop and neutral, during the fMRI session (t(21) =  
0.162, p = .873, d = .03). Most importantly though, we 
also replicated the finding that search times were 
faster when participants searched with a target rela-
tive to a non-target cue (t(21) = 3.220, p = .004, 
d = .687). The ANOVA on accuracy data was significant 
as well (F(3, 63) = 3.000, p = .029, ηp² = .133). Similar to 
the behavioural session, accuracy was high in all con-
ditions during the fMRI session (> 93.1%) but partici-
pants gave slightly more correct responses in the 
drop cue relative to the neutral cue condition (95.7% 
vs. 93.2%, t(21) = 2.783, p = .011, d = .593) as well as 
in the target cue relative to the neutral cue condition 
(95.4% vs. 93.2%, t(21) = 2.282, p = .033, d = .487).

The behavioural results from both sessions indicate 
that participants used the informative cues during the 
search, whether such cues indicated targets or nontar-
gets. As a consequence, search performance benefited 
relative to baseline, with target templates being more 
effective (> 200 ms faster on average) than non-target 
templates (> 131 ms faster on average), consistent 
with earlier findings. At the same time, target cues 
appeared more effective than non-target cues, 
which is also consistent with earlier reports.

fMRI

Overall, the fMRI analyses were guided by two main 
questions. First, which brain areas carry information 
about the content of the template (i.e., its category 
membership), and/or the status of the template (i.e., 
whether it is a target, non-target, neutral or 
dropped template). Second, if a brain area represents 
the content of the template, does it represent it in the 

same or a different way for the different types of tem-
plates (i.e., target, non-target, neutral or drop). For this 
reason, we focused on decoding analyses from the 
delay period after cue onset. Decoding analyses of 
the search period can be found in the Supplementary 
Materials (Supplementary Text) together with the uni-
variate BOLD responses. Figures 2 and 5 show the 
decoding accuracies during the delay period for 
each of the three classification analyses across the 
different ROIs for each cue condition separately (see 
Supplementary Materials Figures 5–7 for the entire 
time courses for these and all following analyses).

Content decoding
To assess which brain areas represent category infor-
mation of the memorized item (i.e., cow, dresser, or 
skate), classification accuracies from the within-con-
dition category decoding scheme were submitted to 
an ANOVA with ROI (VC, LOC, pF, IPS, FEF and lPFC) 
and cue condition (target, non-target, neutral and 
drop) as factors. This analysis only showed a signifi-
cant main effect of ROI (F(5, 105) = 10.679, p < .001, 
ηp² = .337). Both the effect of cue condition (F(3, 63)  
= .616, p = .607, ηp² = .028) and the interaction 
between ROI and cue condition failed to reach signifi-
cance (F(15, 315) = .507, p = .824, ηp² = .024). As is 
evident from Figure 2, within-condition category 
decoding was reliably above chance for areas VC, 
LOC and pF but not for IPS, FEF and lPFC. Thus, the 
template’s content was represented predominantly 
in occipito-temporal areas. Importantly, in none of 
the ROIs was the decoding of non-target templates 
weaker than of target templates, or than of neutral 
templates (all p > .1).

To further investigate whether the neural represen-
tations of the templates in the different cue con-
ditions were similar or different, we inspected the 
RDMs for each of the ROIs during the delay period. 
Figure 3 strongly suggests that the representational 
geometry of the activity patterns in the drop con-
dition differed significantly from the other three con-
ditions. In the context of the task instructions, the 
drop condition deviated from the other conditions 
in that it was the only condition where participants 
could altogether drop the object from memory from 
the start of the delay period. Given that there was 
also no indication that non-target templates were 
more weakly represented than dropped templates 
(Figure 2), all further analyses were done without 
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the drop conditions. Figure 3 suggests, at first glance, 
that the remaining three conditions are very similar, 
regardless of whether a target, non-target or neutral 
cue was shown. In general, then, participants used 
the cues to store objects in memory when useful for 
the search task (see Supplementary Materials Figure 
2 for the RDM of the search period and Figures 3
and 4 for the RDMs for both periods but without 
the drop condition).

To quantify and statistically test these obser-
vations, we calculated the average similarity of the 
neural representations within and between the cue 
conditions. For the within-condition similarity con-
dition, we computed the average correlation of each 
exemplar of each category with all the other exem-
plars of that category for each cue condition (e.g., 
the correlation between one exemplar of a cow and 
another exemplar of a cow in the target condition). 
For the between-condition similarity condition, we cal-
culated the average correlation of each exemplar of 
each category in one condition with all the other 
exemplars of that same category but in another con-
dition (e.g., the correlation between one exemplar of 
a cow in the target condition and another exemplar of 
a cow in the non-target condition). The resulting 
ANOVA with similarity type (within- vs. between-con-
dition), ROI (VC, LOC, pF, IPS, FEF and lPFC) and cue 
condition (neutral vs. non-target, neutral vs. target 

and non-target vs. target), showed a significant 
main effect of similarity type (F(1, 21) = 7.047, p = .015, 
ηp² = .251), ROI (F(5, 105) = 13.269, p < .001, ηp²  
= .387), but not cue condition (F(2, 42) = .054, p = .873, 
ηp² = .003) or any of the interactions (all F < .499, 
p > .586, ηp² < .023). Figure 4 shows the pattern of 
correlations for the crucial non-target vs. target cue 
conditions. Importantly, correlations were of similar 
magnitude and followed the same pattern across 
brain areas for the between-condition and within- 
condition comparisons, suggesting a similar type of 
representation across target and non-target 
conditions.

To further address the question of whether the 
content of a template was represented in the same 
or a different way for the different types of templates, 
we analysed the data from the cross-condition cat-
egory decoding scheme (see Figure 5(A)). An 
ANOVA with ROI (VC, LOC, pF, IPS, FEF and lPFC) 
and cue condition (neutral vs. non-target, non- 
target vs. target, neutral vs. target) on classification 
accuracies showed a main effect of ROI (F(5, 105) =  
13.008, p < .001, ηp² = .382), no main effect for con-
dition cue (F(2, 42) = .707, p = .499, ηp² = .033) and 
no interaction (F(10, 210) = 1.515, p = .109, ηp²  
= .080). Classification accuracy for the non-target vs. 
target pair deviated significantly from chance in all 
ROIs (VC: t(21) = 4.224, p < .001, d = .900, LOC: t(21) =  

Figure 2. Object category decoding during the delay period (cross-condition) for areas VC, LOC, pF, IPS, FEF and lPFC separately for 
each cue condition. Significance levels against chance here and in all other figures are indicated by asterisks whereby † < .1, * p < .05, 
** p < .01, *** p < .001, ns: not significant.
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Figure 3. Representational dissimilarity analysis of object representations in areas VC, LOC, pF, IPS, FEF and lPFC during the delay 
period. The bluer the more similar and the redder the more dissimilar a representation. Note: Here and in all other representational 
dissimilarity graphs, dissimilarity is represented by scaled-ranked correlations.
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4.241, p < .001, d = .904, pF: t(21) = 3.988, p < .001, 
d = .850, IPS: t(21) = 4.024, p < .001, d = .858, FEF: 
t(21) = 2.846, p = .010, d = .607) except in lPFC (lPFC: 
t(21) = 1.711, p = .102, d = .365). These results further 
confirm little difference in neural representations of 
the same object category when used as a target 
versus non-target cue.

Status decoding
The previous analyses were concerned with the rep-
resentation of the content of the template. Here, we 
used the status decoding scheme to investigate 
whether different brain regions differentiate 
between the relevance status of a template, regardless 
of its content (see Figure 5(B)). An ANOVA with ROI 
(VC, LOC, pF, IPS, FEF and lPFC) and cue condition 
(neutral vs. non-target, non-target vs. target, neutral 
vs. target) showed a main effect of ROI (F(5, 105) =  
3.187, p = .010, ηp² = .132), no main effect of cue con-
dition (F(2, 42) = 2.103, p = .135, ηp² = .091) and no 
interaction (F(10, 210) = .876, p = .507, ηp² = .040). 
Reliable above-chance decoding for all condition 
pairs within a particular ROI was only observed in 
lPFC. Critical for our main hypothesis was that the 
same pattern was even more evident in the data of 
the non-target vs. target pair (t(105) = 2.366, p = .020). 
Here, significant above-chance decoding of status 
information was only found in more frontal areas 
FEF (t(21) = 2.091, p = .049, d = .446) and lPFC (t(21)  

= 3.208, p = .004, d = .684). The comparisons in the 
other ROIs did not reach significance (VC: t(21) =  
2.014, p = .057, d = .429, LOC: t(21) = .798, p = .434, d  
= .170, pF: t(21) = .201, p = .843, d = .043, IPS: t(21) =  
2.054, p = .053, d = .438). Notably, there was a signifi-
cantly larger univariate BOLD response for the non- 
target relative to the target cue condition in area 
lPFC (t(21) = 3.032, p = .006, d = .646; Supplementary 
Figure 1A). None of the other comparisons showed 
a significant difference in the BOLD response. It is 
likely that the difference in overall BOLD response 
contributed to above-chance status decoding for 
the non-target vs. target pair. However, that does 
not necessarily mean it was the only contribution, 
particularly given the fact that the other comparisons 
also resulted in above-chance multivariate decoding 
while there was no univariate difference.

Conclusion

Overall, these results suggest that while posterior 
regions (i.e., VC, LOC and pF) predominantly represent 
object category-specific content information of the 
template, frontal areas (i.e., FEF and lPFC) predomi-
nantly carry information about the status of the tem-
plate, with IPS exhibiting a tendency to represent 
both to some extent. Figure 6 illustrates this pattern 
more clearly, by combining content and status decod-
ing for the target and non-target conditions in one 

Figure 4. Correlations between representations within and between target and nontarget template conditions, for areas VC, LOC, pF, 
IPS, FEF and lPFC in the non-target vs. target cue condition.
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graph. A two-way ANOVA on the decoding accuracies 
from target and non-target trials with ROI (VC, LOC, 
pF, IPS, FEF and lPFC) and decoding scheme (category 
content and status) as factors indeed showed a sig-
nificant interaction (F(5, 105) = 8.036, p < .001, ηp²  
= .277) providing statistical support for the pattern 
observed. We point out though that somewhat unex-
pectedly, early visual cortex (VC) also showed sub-
stantial above-chance status decoding – something 
we will return to in the Discussion.

Discussion

Consistent with previous work (e.g., Arita et al., 2012; 
Carlisle & Nitka, 2019; Woodman & Luck, 2007; Zhang 
et al., 2020), we found that providing participants with 
information on which objects can be safely ignored 
improves visual search performance, as RTs were 
faster when participants were given a non-target 
cue (as to what to ignore) compared to when no 
cue or a less informative neutral cue was provided. 

Figure 5. Object category and status decoding during the delay period for areas VC, LOC, pF, IPS, FEF and lPFC. (A) Classification 
accuracy for cross-condition category decoding separately for each cue condition. (B) Classification accuracy for status decoding sep-
arately for each cue condition. Significance levels against chance here and in all other figures are indicated by asterisks whereby † < .1, 
* p < .05, ** p < .01, *** p < .001, ns: not significant.
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At the same time, as in these previous studies, non- 
target cues were not as effective as target cues. The 
reduced efficacy of non-target cues compared to 
target cues could reflect several things. For one, inhi-
bition of distractors, whether implemented prior to 
display onset or not, might be less effective than 
enhancement of potential targets. Alternatively, non- 
target cues may be used to derive the target identity 
at the moment the display appears – a process that 
takes additional time (Beck & Hollingworth, 2015; 
Becker et al., 2015). Finally, participants may try to 
prevent inadvertent orienting to cued distractors by 
slowing down (“gating”) the response to the overall 
visual input (Noonan et al., 2018; de Vries et al., 
2019). However, our main question was not what 
makes non-target cues less effective than target 
cues, but what makes them effective in the first place.

We distinguished two main hypotheses. Under the 
first hypothesis, the representation of non-target 
information is either suppressed or transformed 

already prior to search so that it is effectively deprior-
itized by the time the non-target information actually 
appears. We found no evidence supporting this 
hypothesis. Specifically, using MVPA, we found no evi-
dence that the representational pattern of activity in 
object-selective cortex was weaker for non-target 
templates than for target templates or for memories 
in the neutral baseline condition – let alone that 
activity would be weaker than in the drop condition, 
where the memory was no longer relevant. An analysis 
of representational similarity also did not reveal any 
differences between target, non-target or neutral tem-
plates, and there was no evidence that non-target rep-
resentations were transformed in ways that have been 
found in previous studies (van Loon et al., 2018; Wan 
et al., 2020; Yu et al., 2020). Taken together, this pro-
vides little evidence in support of the inhibition 
hypothesis.

Instead, the results of our study are consistent with 
the alternative hypothesis, namely that target and 

Figure 6. Direct comparison of cross-condition category versus status decoding for target and non-target cue conditions during the 
delay period. Classification accuracy is shown collapsed across the different cue conditions and shown relative to the relative chance 
level.
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non-target information is represented similarly prior 
to search, but accompanied by the implementation 
of different control signals that prepare for the right 
course of action when the search display, and with 
it the target or non-target information, is encoun-
tered. While content representations in the posterior 
cortex remained the same across conditions, frontal 
cortical areas were clearly sensitive to the status of 
the template per se, regardless of content. This was 
the case for FEF, but especially for lPFC, which could 
clearly distinguish status, but not category. Contrast 
this with pF, which could clearly distinguish category, 
but was not sensitive to the difference between target 
and non-target status. Currently, we have no way of 
determining the exact nature of the frontal operations 
that are induced by the different cues. We show that 
these areas are sensitive to what we have referred to 
as the status of the cued item, where status is not 
intended as a neural property in and of itself but as 
a neutral operational term meant to convey the pro-
spective functional use of the stored representation 
for the subsequent search (cf. van Loon et al., 2017, 
Olmos-Solis et al., 2021). Many potential processes 
are likely to be involved in realizing that use. As laid 
out in the introduction, this could involve a plan to 
reactively suppress the distractor once it is actually 
encountered (cf. Moher and Egeth, 2012; Gaspelin & 
Luck, 2018), an overall suppressive signal gating the 
perceptual input at search onset (cf. Noonan et al., 
2018; de Vries et al., 2019), or a plan to recode the 
non-target information into target information once 
the display has appeared (cf. Beck & Hollingworth, 
2015; Becker et al., 2015). The successful status decod-
ing may also reflect differences in the overall effort or 
task difficulty that comes with any of these oper-
ations, and that would then presumably result in 
different energy consumption and thus blood oxy-
genation patterns. If so, this would still need an expla-
nation for why one condition is more effortful than 
the other, and we believe here the potential 
additional cognitive control operations that may 
come with non-target templates would be a good 
candidate. In short, any or all of these aspects might 
have contributed, as may be effects as yet unthought 
of, and future research will need to disentangle these 
contributions. Regardless, we believe the concept of a 
“negative” or “rejection” template (cf. Arita et al., 
2012; Woodman & Luck, 2007) still has value, but 
then reflect how search will be controlled, rather 

than how the content representation of the template 
itself changes.

Here we focused on the flexible prior inhibition of 
distractor object features or identities. Distractor inhi-
bition may also build up over many trials in which the 
same information is repeated over and over again. In 
addition, inhibition may operate spatially, by suppres-
sing a known distractor location. These potential 
mechanisms are treated elsewhere (e.g., Chelazzi 
et al., 2019; Cunningham & Egeth, 2016; Failing 
et al., 2019; van Moorselaar & Slagter, 2019; van Moor-
selaar et al., 2020; 2021; van Zoest et al., 2021; Wang 
et al., 2019). In general, observers may effectively 
learn to avoid a consistent distractor (whether in 
terms of location or feature or both). Given the com-
ponent of learning, such avoidance mechanisms must 
reflect traces or mechanisms that survive beyond the 
current trial and are thus by definition present prior to 
the next search display onset. However, while that 
may count as prior inhibition (although such avoid-
ance mechanisms are not necessarily inhibitory in 
nature), they certainly would not be flexible in the 
sense that observers can instantiate the suppression 
on a trial-by-trial basis.

Our results revealed a clear division of work across 
brain regions: Posterior brain areas preferentially 
coded for the content (i.e., category) of the memor-
ized items, while frontal areas mostly carried infor-
mation about the relevance status of items in 
working memory, consistent with lPFC and FEF repre-
senting the goal- or task context-related signals that 
prioritize relevant over irrelevant information (e.g., 
Christophel et al., 2018; Fuster et al., 1985; Lee & 
D’Esposito, 2012; Lee et al., 2013; Miller et al., 2011; 
Serences, 2016; Zanto et al., 2011). Note that the 
opposite trends for category and status decoding 
across the cortical hierarchy preclude an explanation 
in terms of mere differences in signal to noise levels 
across regions, and must thus represent different 
functionalities. The results are also consistent with a 
recent study by Olmos-Solis et al. (2021), who 
showed a similar division of labor in a study in 
which the relevance of the working memory rep-
resentation was not determined by whether it 
would be a target or non-target, but by the specific 
order of tasks. That is, observers were asked to 
remember a target cue, which would then be relevant 
for either the first or the second of two sequential 
visual search tasks. While posterior areas (early 
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visual cortex and pF) were more sensitive to the target 
category than to its status, frontal areas (including FEF 
and lPFC) were sensitive to the order of relevance for 
the upcoming tasks, irrespective of category. In 
addition, Olmos-Solis et al. found the IPS to be sensi-
tive to both target category, and target status, 
suggesting that IPS served as a hub multiplexing 
target information with task rules such as those 
setting target priority (cf. Cole et al., 2013; Majerus 
et al., 2007; Mitchell & Cusack, 2008; Sprague et al., 
2018). However, in the current study, we found IPS 
to not be particularly sensitive to the status of the 
cue (i.e., whether target or non-target), nor the cue 
category. This suggests that IPS was not particularly 
active or even involved in the a priori (de-)prioritiza-
tion of information in this task.

A number of previous fMRI studies have attempted 
to find evidence for distractor suppression. Seidl et al. 
(2012) asked participants to search pictures of real- 
world scenes for a specific target category, such as a 
car, a human, or a tree. The target category was con-
sistent per run (block). Crucially, the target of a pre-
vious run could return as a distractor in a current 
run. If so, this led to suppressed BOLD response in dis-
tractor-related areas in object-selective cortex (see 
also Peters et al., 2012). However, activity was 
measured after scene onset and could thus represent 
pro-active or reactive mechanisms. Moreover, given 
the blocked nature of the task, the pattern might rep-
resent a gradual build-up of suppression, rather than 
in a flexible top-down fashion. The same was true for 
a study by Marini et al. (2016), who used a paradigm in 
which participants were instructed to respond to a 
target that could be surrounded by distractors, 
which in turn could be congruent or incongruent. 
The probability of distractors being present as well 
as of their congruency was varied between blocks. 
Marini et al found reduced activity in the occipital 
cortex in response to display onsets when incongru-
ent distractors were expected, suggestive of suppres-
sion. They also found lPFC to be involved in 
anticipating distraction. However, here too the 
design did not allow for a test of flexible, goal- 
driven suppression prior to search. Finally, using a 
similar design as ours but with colours rather than 
object categories, Reeder et al. (2017, 2018) found 
an overall reduced BOLD response, as well as fuzzier 
(i.e., less consistent) representational patterns in the 
occipital cortex for non-target cues than for target 

cues. Here we did not replicate this finding. It is poss-
ible that participants indeed partially suppressed the 
non-target representation in the case of colour, and 
for an unknown reason did not do so in our exper-
iment. Conversely, it is also possible that participants 
found the non-target cue not very useful, and simply 
devoted less memory to it than to target cues. Alter-
natively, participants may have verbally labelled the 
non-target colour, thus reducing the necessity for a 
visual memory. In the current study, verbal re-label-
ling was discouraged by using different exemplars 
from the same category. In any case, it deserves 
emphasizing that although here we found no evi-
dence for active prior suppression, we of course 
cannot exclude the possibility that such suppression 
does occur under different circumstances.

Limitations

A number of limitations to our study can be pointed 
out. For one, the search displays consisted of exem-
plars within the same category (e.g., two types of 
cow, one set containing the target, the other set 
only nontargets). This may mean that possibility for 
attentional guidance was quite limited, and hence 
any of the behavioural advantages due to the infor-
mative cues (whether target or non-target cues) was 
not due to more efficient attentional guidance but 
due to post-selection decision processes. We cannot 
exclude the possibility of at least a partial contribution 
of such decision processes. This would mean that any 
templates tested were not necessarily attentional 
templates, used as a pro-active attentional set (cf. 
Olivers et al., 2011). In our view, they would still be 
target templates though, as also decision processes 
will need some form of target or non-target represen-
tation. We show that such representations are no 
different after target or non-target cues.

Note further that we chose to employ multiple 
similar exemplars for each of the categories as a basis 
for the search display in order to prevent straightfor-
ward recoding of non-target information into target 
information (cf. Beck & Hollingworth, 2015; Becker 
et al., 2015). If the target was not presented on one 
cow, it would be presented on any of three other 
cows. While we consider such conversion unlikely due 
to the additional memory load and therefore effort 
that it would entail, neither can we fully exclude the 
possibility. Such a conversion would explain the 
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similarity between the target and non-target template 
conditions. In any case, it would imply that the observer 
prefers such additional load over some alternative, such 
as creating an inhibitory template. We point out that 
the same logic in principle also applies to target cues: 
Observers could convert that information into distrac-
tor information instead. While even less likely, we 
cannot logically exclude this possibility.

Finally, there is the possibility that observers treated 
all pictures of objects as distractors. Note that the 
actual search target (the letter T among Ls) was 
printed on top of the objects, and so the objects 
may actually compete with selection through suppres-
sive interactions (e.g., Kastner et al., 2001). It would 
then be wise to inhibit all pictures regardless of 
being indicative of targets or nontargets – which 
would then lead to highly similar representations. 
While we cannot exclude this possibility, the behav-
ioural data makes it an unlikely contender: The cued 
information was useful for search, and this was more 
so the case for target than for non-target cues.

Another potential limitation is the consistent 
mapping of cue appearance (+, −, O, X) to 
meaning (positive or target template, negative or 
non-target template, neutral, drop). We opted for 
this in order to maximize understanding and per-
ceived usefulness of the cue (compared to more 
arbitrary and abstract cue-meaning mappings), but 
it runs the risk that we have been decoding the 
sensory appearance of the cue rather than the cog-
nitive state it was meant to evoke. We regard this 
risk as low for the higher-order frontal and parietal 
areas which are traditionally more sensitive to task 
demands than to sensory input. Moreover, the 
areas maximally sensitive to perceptual category 
(LOC, pF) were actually least sensitive to status. 
However, the visual differences between cues may 
well explain the rather prominent status decoding 
in early visual cortex that we observed.

Conclusion

To conclude, so far neurophysiological measures have 
found little direct support for flexible, pro-active, a 
priori suppression of distractor representations (see 
also de Vries et al., 2019; Noonan et al., 2018; Rajsic 
et al., 2020; van Zoest et al., 2021 for findings from 
the EEG domain). Instead, the system appears to 
plan how to react when the stimulus appears.

Note

1. Here, we focus on the flexible prior suppression of dis-
tractor features or identities. Distractor suppression 
may also build up over many trials in which the same 
information is repeated from trial to trial. In addition, 
suppression may operate spatially, by inhibiting a 
known distractor location. We will return to this in the 
Discussion.
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