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 13 
Summary 14 
We perceive a stable visual world across eye movements, despite the drastic retinal transients these movements 15 
produce. To explain vision’s spatial stability, it has been suggested that the brain encodes the location of attended 16 
visual stimuli in an external, or spatiotopic, reference frame. However, spatiotopy is seemingly at odds with the 17 
fundamental retinotopic organization of visual inputs. Here, we probe the spatial reference frame of vision using 18 
ultra-high-field (7T) fMRI and single-voxel population receptive field mapping, while independently manipulating 19 
both gaze direction and spatial attention. To manipulate spatial attention, participants performed an equally 20 
demanding visual task on either a bar stimulus that traversed the visual field, or a small foveated stimulus. To 21 
dissociate retinal stimulus position from its real-world position the entire stimulus array was placed at one of three 22 
distinct horizontal screen positions in each run. We found that population receptive fields in all cortical visual field 23 
maps shift with the gaze, irrespective of how spatial attention is deployed. This pattern of results is consistent with 24 
a fully retinotopic reference frame for visual-spatial processing. Reasoning that a spatiotopic reference frame could 25 
conceivably be computed at the level of entire visual areas rather than at the level of individual voxels, we also used 26 
Bayesian decoding of stimulus location from the BOLD response patterns in visual areas. We found that decoded 27 
stimulus locations also adhere to the retinotopic frame of reference, by shifting with gaze position. Again, this result 28 
holds for all visual areas and irrespective of the deployment of spatial attention. We conclude that visual locations 29 
are encoded in a retinotopic reference frame throughout the visual hierarchy. 30 
  31 
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Introduction 1 
Eye movements rapidly alter the projection of visual objects on the retina. Nevertheless, our subjective 2 
visual perception is stable and invariant to these eye movements. This “space constancy” phenomenon 3 
presents researchers with a conundrum: how do our brains build a stable impression of the world based 4 
on such fleeting, jumbled sensory inputs? One major step to understanding space constancy would be to 5 
answer the question of how the information of visual objects’ location is represented by the visual system.  6 
  Visual location is first encoded by the retina1, whose topography is maintained as spatial information 7 
is transmitted to subsequent processing stage2,3. Foundationally, visual locations are encoded in a common 8 
“retinotopic” reference frame4,5, keeping the retinal photoreceptors organization. Neural responses in this 9 
retinotopic reference frame are modulated by gaze direction6,7. This combination of action-related and 10 
visual sources of information is thought to allow the brain to localize objects in the outside world8–10. But 11 
the precise mechanisms underpinning world-centered localization, including the role of spatial attention, 12 
remain a matter of debate11–14. Specifically, an open fundamental question is whether gaze modulation of 13 
visual information leads to the encoding of locations of visual stimuli in a spatiotopic frame of reference. 14 
 Here, we leveraged population receptive field (pRF) estimation15 and ultra-high-field (7T) whole brain 15 
fMRI to probe the spatial reference frame of vision at the level of local neural populations sampled by 16 
individual voxels. We determined voxels’ pRF position while participants directed their gaze to three 17 
distinct locations, allowing us to test whether pRFs are pinioned to the outside world (the spatiotopic 18 
hypothesis), or fixed to the retina (the retinotopic hypothesis). To study the role of spatial attention, 19 
participants performed an equally demanding orientation-discrimination task either at fixation or on a 20 
moving visual-mapping stimulus. We found that throughout the cortical visual hierarchy, pRFs 21 
systematically shift with gaze, as being fixed to the retina, irrespective of where spatial attention is 22 
deployed. Next, to probe the visual reference frame at the level of entire visual field maps, we adapted a 23 
Bayesian decoding method16–18, to infer the spatial properties of our visual stimuli from the pattern of 24 
voxel responses in entire visual areas. In line with our single-voxel results, we found that decoded stimulus 25 
locations are fixed to the retina, again favoring the retinotopic hypothesis. Altogether our results suggest 26 
that location is represented throughout the visual hierarchy by populations of receptive fields operating 27 
in a retinotopic reference frame.   28 
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Results 1 
PRF modeling and attention effect 2 
Participants were instructed to continuously fixate a bull’s-eye on a black background while horizontal and 3 
vertical bars swiped across the full extent of the screen (Fig. 1A, full screen). They reported the orientation 4 
of noise patterns presented either within the moving bar (attend-bar condition) or within the fixation 5 
bull’s-eye (attend-fix condition). We titrated the difficulty of the task with a staircase procedure which 6 
adjusted the orientation dispersion coefficient of pink noise patterns inside the presented stimuli (Fig. 1B). 7 
Participants maintained the expected staircase performance level (Fig. 1C, full screen, attend-bar: 74.06% 8 
± 2.50; full screen, attend-fix: 80.26% ± 0.40), confirming their ability to attend to the noise patterns 9 
presented in the periphery or at fixation with equal performance. Apart from the attention task, the 10 
stimulus presentation sequence of full screen followed an identical sequence (Fig. 1D, top), allowing us to 11 
average signal timeseries across the attention tasks (Fig. 1E) into a single, high-SNR fiducial timeseries. 12 

 
 
Figure 1. Methods, pRF modeling and attention effect. A. Participants fixated a bull’s-eye in either full screen (top left panel), 
gaze center (top center), gaze left (bottom left) and gaze right runs (center left). They reported the orientation of pink noise 
patterns (+45° or –45°) presented either within the bar (attend-bar) or within the fixation bull’s-eye (attend-fix). B. We titrated 
the difficulty of the orientation discrimination task by varying the dispersion coefficient of the orientation filter applied to the pink 
noise pattern. The figure presents probability distributions of orientations contained within the pink noise patterns as a function 
of the dispersion coefficient. Right insets, showcase three levels of difficulty from non-oriented random noise (bottom) to the 
most oriented pattern used (top). C. Group performance (n = 8, two sessions each) obtained in the attend-bar (black) and attend-
fix (gray) conditions. Error bars show ±SEM and the dashed line shows the staircase convergence level (~79% correct). D. In the 
full screen and gaze center/left/right conditions, a bar moved in different directions (black rectangles with arrows) interleaved 
with periods in which only the fixation bull’s-eye was shown (empty black rectangles). E. To determine regions of interest (ROIs), 
we averaged full screen runs and fit a linear pRF model. F. Example V1 timeseries and its best explained pRF model and parameters. 
G. Single participant (sub-005) pRF angle and eccentricity maps projected on his inflated brain. Lines on the cortex delineate ROIs.  
Participants brains visualizations are available online (invibe.nohost.me/gazeprf/). H. Map of the effect of spatial attention 
obtained by comparing the explained variance of attend-bar and attend-fix conditions separately. Reddish colors of the inflated 
cortex illustrate the effect of spatial attention. I. Model explained variance (R2) observed for the best-fitting voxels of each ROI in 
the attend-bar (black) and attend-fix (gray) conditions. Error bars show ±SEM, asterisks show significant difference between 
conditions (two-sided p < 0.05). 
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From each voxel’s fiducial timeseries, we quantified the screen locations at which a stimulus evokes a 1 
visual response by estimating its population receptive field properties. Specifically, we fit a linear, isotropic 2 
Gaussian pRF model to find optimal location (pRFx and pRFy) and size (pRFsize) parameters that quantify 3 
the spatial tuning of the neural population within each voxel. Figure 1F shows an example of a V1 voxel 4 
timeseries and its best-fitting pRF model. From the position parameters, we derived pRF eccentricity and 5 
pRF angle maps that can be projected onto individual participants’ cortical surfaces (Fig. 1G) to delineate 6 
visual field maps as regions of interests (see Methods). We next repeated this analysis using timeseries of 7 
attend-bar and attend-fix runs averaged separately (Fig. 1H, top), using the fiducial outcomes as starting 8 
parameters. Figure 1H show an inflated cortex of a participant displaying the change in explained variance 9 
(R2) resulting from manipulating spatial attention. Using the 250 best-fitting voxels per ROI, we found a 10 
significant improvement of the explained variance when comparing the attend-bar to the attend-fix 11 
conditions for all ROIs (attend-bar: 0.51 > R2 > 0.18 vs. attend-fix: 0.43 > R2 > 0.15, 0.0117 > ps > 0.0001, 12 
two-sided p values) except area LO (attend-fix: R2: 0.38 ± 0.03 vs. attend-bar R2: 0.36 ± 0.04, two-sided p = 13 
0.24). This pattern of result was similar when including all voxels contained within the ROIs. Taken 14 
together, behavioral and functional imaging results illustrate classical effects of visual spatial attention: an 15 
improvement of orientation discrimination abilities19,20 correlated with an improvement of the 16 
corresponding fMRI BOLD signal-to-noise-ratio21,22. 17 
 18 

Out-of-sample predictions show retinotopic encoding of visual space 19 
We next aimed to use the pRF estimates from the full-screen condition to probe the reference frame of 20 
spatial vision. Across runs, participants were instructed to fixate their gaze either at the screen center (Fig. 21 
1A, gaze center), to the left (Fig. 1A, gaze left) or to the right of it (Fig. 1A, gaze right). The entire mapping 22 
stimulus sequence was centered on these fixation locations, and was restricted to vertical bars moving 23 
rightward or leftwards, vignetted by a circular aperture (Fig. 1A and Fig. 1D). Again, participants reported 24 

 
 
Figure 2. Out-of-sample retinotopic and spatiotopic predictions. A. Retinotopic predictions are obtained by adding the change 
in gaze direction to the full screen pRFx parameters (e.g., pRFxgaze left = pRFxfull screen – 4°). The spatiotopic hypothesis dictates that 
the pRFx should stay identical irrespective of the gaze direction (i.e.,  pRFxgaze left =  pRFxgaze right = pRFxgaze center =  pRFxfull screen). B-
C. Example retinotopic (red) and spatiotopic (blue) timeseries predictions for V1 (B) and hMT+ voxels (C) in the gaze center (top 
row), gaze left (middle row) and gaze right attend-bar runs of one participant (sub-003). Leftmost inset values show corresponding 
model R2. D-E. Retinotopic (red) and spatiotopic predictions (blue) change in explained variance between gaze left/right and gaze 
center conditions across ROIs. Note that only spatiotopic prediction of V1, V2 and V3 voxels display a significant change as 
compared to zero in both attention conditions (V1/V2/V3: 0.0156 > ps > 0.0001; two-sided p values), as well as V3AB (two-sided 
p = 0.0156) and VO in the attend-bar condition (two-sided p = 0.0078). Error bars show ±SEM, asterisks show significant difference 
between retinotopic and spatiotopic predictions (two-sided p < 0.05). 
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the orientation of noise patterns presented within the bar (attend-bar) or within the fixation bull’s-eye 1 
(attend-fix). They reached the staircase expected performance level in the gaze center (Fig. 1C, attend-2 
bar: 76.27% ± 1.67; attend-fix: 76.95% ± 1.48), the gaze left (Fig. 1C, attend-bar: 76.59% ± 2.30; attend-fix: 3 
75.88% ± 2.49) and gaze right conditions (Fig. 1C, attend-bar: 78.09% ± 1.66; attend-fix: 80.61% ± 1.25). 4 
Using the full screen experiment’s pRF parameters, we calculated predicted timeseries for the gaze center, 5 
gaze left and gaze right conditions in the retinotopic and spatiotopic reference frame. Specifically, to 6 
obtain retinotopic predictions we added the gaze direction change to the pRFx parameter (x-coordinate 7 
of the pRF) obtained in the corresponding full screen conditions (Fig. 2B, retinotopic prediction). The 8 
spatiotopic hypothesis supposed that the pRFx do not vary as a function of the gaze directions (Fig. 2A, 9 
spatiotopic prediction). We thus kept the pRFx parameter as observed in the corresponding full screen 10 
conditions. Figure 2B-C illustrate the predicted and measured timeseries of V1 and hMT+ voxels. We 11 
highlighted these regions to relate them to former studies reporting spatiotopic effects11,12.  12 
 13 

Importantly, the gaze center condition can serve as a baseline: both the spatiotopic and retinotopic 14 
predictions necessarily produce identical pRFx parameters. We computed the change in the pRF model 15 
explained variance (R2) between the gaze left and gaze right runs as compared to the gaze center runs. We 16 
found, again using the best 250 voxels across ROIs, significantly lower explained variance for the 17 
spatiotopic relative to the retinotopic prediction in both the attend-bar (Fig. 2D, spatiotopic prediction:  18 

 
 
Figure 3. Fitting retinotopic and spatiotopic pRF models. A. Fitting procedure. We used a coarse-to-fine optimization fitting 
procedure in which we kept the pRFy and pRFsize parameters from the corresponding full screen runs. In order to avoid bias 
between the spatiotopic and retinotopic model, we first used two different sets of parameter starting points. These starting points 
were based on either the retinotopic (red) or the spatiotopic (blue) hypotheses. For a next optimization stage, we selected the 
parameters producing the highest fit quality. B. Retinotopic and spatiotopic predictions. The gaze center pRFx as a function of the 
gaze left/right pRFx will either shift (left panel, retinotopic prediction) or remain at the same position (right panel, spatiotopic 
prediction) when comparing the gaze center with the gaze left (green) or gaze right conditions (purple). C-D. Each panel shows 
the group average of 16 equal bins of the pRFx obtained in the gaze center runs as a function of the corresponding group averaged 
bins of the pRFx obtained in the gaze left (purple) and gaze right runs (green) for the attend-bar (C, dark colors) and attend-fix 
conditions (D, light colors). Error areas show ±SEM. E. Group average reference frame index (RFI) observed in the attend-bar 
(black) and attend-fix conditions (gray) for the best-fitting voxels of each ROI. Error bars show ±SEM, white asterisks show 
significant RFI as compared to a null effect (two-sided p < 0.05). Black asterisks indicate a significant difference between the 
attend-bar and attend-fix conditions (two-sided p < 0.05). F-G. Reference frame index maps obtained by projecting the RFI 
obtained in the attend-bar (F) and attend-fix conditions (G) on inflated cortex using a unimodal color scale (blue: spatiotopic vs. 
red: retinotopic) for a participant (sub-05, same as in Fig. 1).  
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+2.36% > R2 change > -28.91% vs. retinotopic prediction: +3.96 > R2 change > +1.09%, 0.0195 > ps > 0.0001, 1 
two-sided p values) and attend-fix conditions (Fig. 2E, spatiotopic prediction:  +4.61% > R2 change > -2 
23.59% vs. retinotopic prediction: +6.14 > R2 change > -1.12%, 0.0352 > ps > 0.0001, two-sided p values). 3 
Similar effects were found when including all voxels contained within the ROIs. 4 
 5 
Fitting pRFs positions shows retinotopic encoding of visual space 6 
The results presented above suggest that the visual system encodes location in a retinotopic reference 7 
frame. However, our first analysis did not allow the pRFx parameter to vary in between the retinotopic 8 
and spatiotopic predictions, which could have provided evidence for spatiotopic representations of visual 9 
space. Thus, we fit the horizontal pRF position parameter in the gaze conditions while keeping the other 10 
pRF parameters constant (pRFy and pRFsize). To avoid any bias due to the starting points of the fitting 11 
procedure, we initiated parameters from distinct horizontal pRF position values referenced against either 12 
the gaze position (Fig. 3A, retinotopic starting points) or the screen center (Fig 3A, spatiotopic starting 13 
points). In a subsequent stage, we optimized the horizontal pRF position parameter starting from the 14 
highest explained variance model (R2) of the first stage. We formulated two distinct predictions based on 15 
our two competing hypotheses. We used the gaze center condition as a reference for both hypotheses, 16 
since they produce identical predictions. In the retinotopic reference frame hypothesis, horizontal pRF 17 
position in the gaze left and gaze right conditions shifts based on gaze direction (Fig. 3B, retinotopic 18 
prediction). Conversely, in the spatiotopic reference frame hypothesis, horizontal pRF position shouldn’t 19 
differ from that observed when participants look straight ahead (Fig. 3B, spatiotopic prediction). Figure 3C 20 
and Figure 3D show these comparisons across participants for best-fitting voxels of V1 and hMT+ using 21 
data modeled from the attend-bar and attend-fix runs respectively. In accordance with previous studies11–22 
13, results suggest that V1 uses a retinotopic frame of reference irrespective of where participant deploy 23 
their spatial attention (Figure 3C-D, top). Our results suggest that hMT+ also uses a retinotopic framework, 24 
regardless of spatial attention’s focus (Figure 3C-D, bottom).  25 
 To evaluate quantitatively which reference frame best explains our results at the level of individual 26 
voxels across all ROIs, we computed a reference frame index (RFI, see Methods), computed as in previous 27 
studies11,13. Briefly, it quantifies the difference in explained variance between the two model classes on a 28 
scale between -1 and 1, where pure spatiotopy corresponds to -1, pure retinotopy to +1, and noise results 29 
in an RFI value of 0. Figure 3E shows RFI obtained with the best-fitting voxels of each ROI for the attend-30 
bar and attend-fix conditions. Across participants, RFI were significantly positive for all ROIs in the attend-31 
bar (0.46 > RFI > 0.20, 0.0312 > ps > 0.0001, two-sided p values) and attend-fix conditions (0.42 > RFI > 32 
0.21, 0.0312 > ps > 0.0001, two-sided p values). Moreover, RFI values did not differ between conditions in 33 
all ROIs (attend-bar: 0.93 > ps > 0.38, two-sided p values), apart from V2 (attend-bar RFI: 0.42 ±0.06 vs. 34 
attend-fix RFI: 0.30 ± 0.08, two-sided p < 0.01) and V3 (attend-bar RFI: 0.40 ±0.03 vs. attend-fix RFI: 0.21 ± 35 
0.07, two-sided p < 0.01). Similar statistics were observed when including all voxels. This analysis suggests 36 
that at the level of individual voxels, visual location is encoded in a retinotopic reference frame irrespective 37 
of the deployment of attention. Figure 3F and 3G illustrate these effects by projecting the RFI onto the 38 
cortical surface of a single participant when he attended stimuli presented within the bar (Fig. 3F) or within 39 
the fixation bull’s-eye (Fig. 3G). 40 
 41 
Bayesian decoding of visual field positions shows retinotopic encoding of visual space 42 
Even if local populations of neurons sampled by single voxels do not show evidence of spatiotopic location 43 
coding, more dispersed effects across the entire visual field map might conceivably provide the means for 44 
the brain to represent world-centered coordinates. Such a mechanism might only be evident when 45 
inferring the locations of visual stimuli from the pattern of BOLD responses across an entire visual region, 46 
while taking into account the covariance structure between voxels. Thus, we next aimed at decoding, for 47 
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each individual ROI, the position of the moving bar for different gaze conditions. We adapted a Bayesian 1 
decoding method developed for estimating, from a pattern of BOLD responses, a full posterior distribution 2 
along a single stimulus dimension, namely visual orientation16, to the multiple stimulus dimensions of 3 
visual space. Our novel method decodes bar spatial locations on a TR-by-TR basis (see Methods), based on 4 
pRF estimates and residual covariance structure from the full screen runs (Fig. 4A). Contrary to techniques 5 
which decode a single stimulus value most consistent with the observed data, Bayesian decoding also 6 
produces uncertainty estimates for the decoded features. This decoded uncertainty has been shown to 7 
relate to sensory uncertainty and decision confidence16,23. Our method determines, for every TR, the full 8 
posterior probability along spatial bar location parameters based on the per-TR BOLD pattern in the gaze 9 
center, gaze left or gaze right conditions (Fig. 4B). Because this posterior distribution lives in visual space 10 
it can be compared to the ground truth of what was actually shown on the screen to participants.  11 
 Crucially, we can define distinct spatiotopic and retinotopic predictions for the reference frame in 12 
which the decoded bar position is hypothesized to reside. As our decoder was trained on the full screen 13 
dataset in which participants fixated straight ahead, the spatiotopic hypothesis predicts that our decoder 14 
will sense the change of gaze as a shift of the bar position in the opposite direction. Conversely, the 15 
retinotopic hypothesis predicts that the decoded position will be centered on the coordinates of the full 16 
screen stimulus, irrespective of gaze direction. Figure 4C shows the decoded position of the bar (i.e., the 17 
peak of the bar position distribution) as observed when considering V1 voxels from a single run of the gaze 18 
center, the gaze left and the gaze right conditions. Figure 4D-E shows for a participant the same effect 19 
averaged across runs and bar passes, for V1 (Fig. 4D) and hMT+ voxels respectively (Fig. 4E). To quantify 20 
decoding performance, we computed the correlation between the decoded position and the retinotopic 21 
ground truth of the moving bar (Fig. 4F). Correlations in the attend-bar condition were significantly positive 22 
for all ROIs (0.77 > r > 0.13, 0.0391 > ps > 0.0001, two-sided p values) with the strongest correlations for 23 
low-level visual areas (e.g., V1, r = 0.73 ± 0.04, p < 0.01; hMT+, r = 0.70 ± 0.05, p < 0.0001, two-sided p 24 
values). Correlations were significantly positive in the attend-fix condition across all ROIs (0.67 > r > 0.17, 25 
0.0078 > ps > 0.0001, two-sided p values), except for sIPS (r = 0.02 ± 0.03, two-sided p = 0.49) and iPCS (r 26 
= 0.07 ± 0.05, two-sided p = 0.21). Furthermore, when participants directed spatial attention to the moving 27 
barn, correlations were significantly increased when compared to attend-fix condition in all ROIs (attend-28 
bar vs. attend-fix, 0.0391 > ps > 0.0001, two-sided p values), apart from V3 (two-sided p = 0.09), hMT+ 29 
(two-sided p = 0.06) and iPCS (two-sided p = 0.21). 30 
 To answer our central question concerning visual reference frames, we again computed a RFI based on 31 
these decoding results (see Methods) for each participant and ROI (Fig. 4E, see Methods). Across 32 
participants, RFIs were significantly positive across all ROIs, indicating a predominant retinotopic reference 33 
frame in both the attend-bar (0.71 > RFI > 0.51, 0.0078 > ps > 0.0001, two-sided p values) and attend-fix 34 
conditions (0.64 > RFI > 0.47, 0.0078 > ps > 0.0001, two-sided p values). Deployment of attention to the 35 
bar stimulus increased the RFI for V1, V3AB, iIPS, sPCS and mPCS (0.0391 > ps > 0.0078, two-sided p values), 36 
indicating that increased decoding fidelity increases the strength of retinotopic representations in both 37 
low and high levels of the visual hierarchy. Lastly, we inspected whether the decoder’s uncertainty perhaps 38 
provides residual indications for any role of spatiotopic spatial coding of visual locations. Specifically, the 39 
mismatch between train and test set due to differences in gaze location should increase uncertainty for 40 
gaze left and gaze right conditions relative to the gaze center condition. We quantified the uncertainty of 41 
the decoder by calculating the dispersion of the posterior along the horizontal position dimension. In the 42 
intermediate layers of the visual system, specifically in areas like V3AB, hMT+, LO, VO, and iIPS, we 43 
observed distinct outcomes of spatial attention. Specifically, when attention is directed towards the bar 44 
stimulus, there is a noticeable reduction in decoder uncertainty, aligning with the previously explained 45 
impacts on decoding fidelity (Supp. Fig. 1A). The impact of decoder uncertainty on attention was 46 
significantly more pronounced than any influence of gaze direction (Supp Fig. 1B).  47 
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 Altogether these effects indicate that visual areas represent visual locations using a retinotopic 1 
reference frame irrespective of the deployment of attention, also when taking into account the region-2 
level covariance structure of BOLD responses. 3 
 4 

Discussion 5 
We determined the spatial reference frame of visual processing across the human visual hierarchy using a 6 
principled computational modeling approach. We estimated population receptive field parameters while 7 
participants directed their gaze to distinct points in outside-world space. This allowed us to directly 8 
juxtapose two competing hypotheses: that of retinotopic spatial coding moving with participants’ gaze, 9 
and that of spatiotopic spatial coding fixed to the outside world or at least to the participant’s head. 10 

 
 
Figure 4. Bayesian decoding. A. Our encoding procedure consists of determining a likelihood p(b|s)time defined as the probability 
of observing fMRI BOLD signal (b) as a function of the stimulus (s) presented in the full screen condition. For this analysis we use 
the spatial tuning and noise correlations of the 250 best-fitting voxels per ROI. B. The decoding procedure illustrated here 
computes the posterior probability over time p(s|b)time using independent recorded BOLD signals for example from the gaze center 
condition. This procedure results in a direct comparison of decoded and actual bar position over time (see comparison of posterior 
distribution sample and ground truth). C. Decoded bar position as function of the time in the gaze center (top, orange), the gaze 
left (middle, green) and the gaze right (bottom, purple) conditions. Graphs present decoding from individual runs (from the second 
session) using V1 voxels activity (attend-bar condition) of a participant (sub-05). Predictions are illustrated as red and blue dashed 
lines for the retinotopic and spatiotopic predictions, respectively. Error areas show the posterior distribution STD. D-E. Average 
decoded bar position across bar passes and sessions for best-fitting voxels of V1 (D) and hMT+ (E) respectively, for gaze center 
(top), gaze left (middle) and gaze right conditions(bottom), in the attend-bar (left panels, dark colors) and attend-fix conditions 
(right panels, light colors). Error areas show ±SEM. F. Group averaged correlation between the decoded bar position and the 
ground truth. Conventions are as in Figure 3E. G. Group average reference frame index observed in the attend-bar (black) and 
attend-fix conditions (gray) for the best-fitting voxels of each ROI. Conventions are as in Figure 3E. 
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Confronting a conundrum of contradictory findings in the literature, we factorially manipulated both gaze 1 
direction and the deployment of spatial attention. In brief, we find that all regions showing responses 2 
tuned to visual spatial location, as gauged using the pRF model, are retinotopically organized. Moreover, 3 
our results indicate that the deployment of spatial attention has no bearing on the reference frame of 4 
visual location processing. We conclude that the human brain fundamentally encodes visual locations in a 5 
retinotopic reference frame throughout the visual hierarchy. Our findings restrict solutions to the space 6 
constancy problem, and increase the prominence of those centered on dynamic interactions between 7 
action and perception, such as trans-saccadic remapping driven by re-afferent motor signals.  8 
 In the present study, we sought to leverage the precision afforded by the combination of ultra-high-9 
field fMRI’s increased SNR and the quantitative pRF model of visual location tuning. This allowed us to 10 
determine the reference frame of visual responses at the local neural population level, in single voxels. 11 
We ensured that for all quantifications, differences in signal quality or pRF size would not bias our 12 
outcomes toward the retinotopic or spatiotopic reference frame, following the logic outlined by Gardner 13 
and colleagues13. We also took into account the fact that V1 neuron receptive fields and pRFs have a 14 
nonlinear normalization field penumbra extending up to a factor of eight beyond their classical linear 15 
extent24. This means that visual information impinging on peripheral retinal areas, such as the visual 16 
transients produced by eye movements, evoke measurable signal fluctuations in even the most central 17 
portions of our retinotopic maps. Indeed, only experiments in full darkness will suffice to fully rule out the 18 
misinterpretation of such visual signals originating from the periphery. Importantly, by employing static 19 
gaze positions throughout our experimental runs and decreasing the strength of peripheral visual 20 
stimulation, we explicitly prevent such spurious signals from producing false spatiotopic patterns in our 21 
data7. We conceptualized experiments and analyses to be able to unequivocally adjudicate between 22 
retinotopic and spatiotopic reference frames. A crucial step here was to explicitly formulate and directly 23 
compare quantitative predictions for both hypotheses, at the level of single-voxel time series and across 24 
populations of voxels within ROIs. Across subsequent analyses these direct comparisons between data and 25 
hypotheses’ predictions consistently favored the retinotopic reference frame hypothesis as the 26 
fundamental spatial encoding scheme of visual cortex.  27 
 As for the role of attention, our results align with previous studies indicating that spatial attention 28 
enhances the fidelity of spatial representations21,22. Spatial attention is known to modulate pRF position in 29 
accordance with the predictions of gain-field models25,26. Our results indicate that enhanced signal fidelity 30 
afforded by spatial attention renders visual cortex more, not less (Figs 3E, 4F-G), retinotopically 31 
organized11.  We conclude that the differential deployment of spatial attention does not result in changes 32 
in the retinotopic spatial reference frame of visual cortex.  33 
 Every day, we experience a stable visual world across our eye movements: an experience far removed 34 
from the flutter of images projected onto our retinae. Our results reframe and highlight the fundamental 35 
question of visual stability across gaze changes, shifting the focus to mechanisms that achieve this stability 36 
with a robustly retinotopic visual cortex. Different solutions to the space constancy problem have been 37 
proposed27,28, we here review these solutions through the lens of our results. A first category of solutions 38 
to the space constancy problem relies on the use of proprioceptive information of the eye position in the 39 
skull. An influential computational model29 supported by numerous findings in both low-level30,31 and high-40 
level visual areas32,33 proposed that proprioceptive signal of gaze direction could be used to recover stimuli 41 
position across eye movements. These findings suggest that the gain of retinotopically organized neurons 42 
is modulated by a field which encodes the position of the animal’s eye. It is known from 43 
electrophysiological studies that although neighboring neurons encode similar locations in retinotopic 44 
visual space, they experience wildly varying gain-field effects31, reflecting a salt-and-pepper organization. 45 
We did not find an influence of gaze position at the level of individual voxels nor at the level of visual areas, 46 
which is possibly in line with this organization at the single neuron level. Other than the potential absence 47 
of structured gain field maps, other reasons, however, might have prevented us to find them. First, visual 48 
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display size used in fMRI studies only allows gaze direction changes smaller than what used in 1 
electrophysiology, although the magnitude of our gaze shifts is in the range of most saccades made during 2 
naturalistic viewing. Second, gain fields from animal studies involved modulation of neuronal activations 3 
while our results rely on fMRI BOLD signals, which only is an indirect proxy of neurons firing rates34,35. 4 
Third, the timescales at which these eye position gain fields impact spatial processing may be faster than 5 
those of our experimental runs. Thus, our results do not rule out gain field mediated solutions to space 6 
constancy. Rather, our results support these accounts, while emphasizing the importance of the 7 
retinotopic reference frame in their application36.  8 
 A second category of solution involves the use of an efference copy37 to correct the consequence of 9 
gaze direction changes either before or during an eye movement38,39. These corrections have been 10 
proposed to be performed on retinotopically organized visual maps with the process being orchestrated 11 
by visual attention40,41. Remapping was observed at both the single neuron measures in distinct visual 12 
maps42, fMRI studies43–45 and human behavior46,47. Our results are compatible with this proposal but do 13 
not test it. Indeed, it is important to note that in order to model voxel activity we asked participants to 14 
maintain steady gaze throughout each acquisition. They change gaze directions only between runs, and 15 
not across trials – an explicit design choice to avoid any peripheral visual stimulation arising from the eye 16 
movements. Nevertheless, as participants laid still with the head and body fixed, our experiments left as 17 
much space as possible for putative fundamental spatiotopic processes to occur (see also14). Our results 18 
thus rule out space constancy solutions relying on an early encoding of space within craniotopic or 19 
spatiotopic maps11,12.  20 
 As we move up the visual hierarchy, responses become more spatially invariant. This invariance 21 
abstracts neural responses away from their exact retinal origins, and reduces their adherence to the 22 
retinotopic reference frame while allowing them to be influenced by factors such as attentional gain 23 
fields25,26,48. It is also clear from a host of canonical findings in the medial temporal lobe that the brain does 24 
indeed encode the location of the agent in world-centered space. Clearly, a host of different information 25 
sources such as self-motion49–51, pictorial cues52, and navigational affordances53–55  play a role in generating 26 
world-centered representations in our everyday interactions with the world. We argue that this process 27 
must feature the continuous integration of low-level sensory and high-level world-centered information. 28 
Interestingly, hippocampus was shown to encode locations in visual space in both humans and rodents56–29 
58, indicating that world-centered and sensory-based spatial reference frames can coexist at higher levels 30 
of processing. These findings demonstrate that V1-hippocampus interaction highlight the intimate links 31 
between different sensory and world-centric reference frames. It is clear that oculomotor behavior plays 32 
a foundational role in drawing these links59. 33 
 34 
Conclusion 35 
Modeling ultra-high-field human cortical activity, we probed the reference frame of spatial vision. We 36 
found, both the level of individual neural population and that of visual areas, that vision is organized 37 
retinotopically, irrespective of where we look or attend. These results point to solutions to the space 38 
constancy problem that use active correction mechanism by means of predictive or proprioceptive signals. 39 
 40 
Methods 41 
Ethics statement 42 
This experiment was approved by the Ethics Committee of Vrije Universiteit Amsterdam and conducted in 43 
accordance with the Declaration of Helsinki. All participants gave written informed consent. 44 
  45 
Participants 46 
Eight students and staff members of the Spinoza Centre for Neuroimaging participated in the experiment 47 
(ages 21-40, 1 female, 4 authors). All except two authors were naïve to the purpose of the study and all 48 
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had normal or corrected-to-normal vision. 1 
  2 
MRI data acquisition 3 
Four T1-weighted (1.0 mm isotropic resolution) and one T2-weighted (1.0 mm isotropic resolution) 4 
structural scans were acquired for each participant at The Spinoza Centre for Neuroimaging on a Philips 5 
Achieva 3T scanner (Philips Medical Systems, Best, Netherlands) and a 32 channel receive-coil array with 6 
a single channel transmit coil. Functional data were collected at the same center on a Philips Achieva 7T 7 
scanner (Philips Medical Systems, Best, Netherlands) with a 32 channel receive-coil array with 8-channel 8 
transmit coil (Nova Medical, Wilmington, MA). Functional data were collected using a 3D-EPI sequence at 9 
a resolution of 1.8 mm isotropic with a 1.3 s volume acquisition time, 44 ms TR, 17 ms TE, consisting of 98 10 
slices of 112 by 112 voxels covering the entire brain. SENSE acceleration was applied in both the Anterior-11 
Posterior (2.61-fold) and Right-Left (3.27-fold) directions. To estimate and correct susceptibility-induced 12 
distortions, we acquired an identical EPI image with an opposite phase encoding direction, after each 13 
functional scan. Transmit field homogeneity was improved by adjusting the 8-channel transmit output 14 
based on a B1+ field population template (i.e., “universal pulse”60).  15 
  16 
Stimuli and tasks 17 
The experiment consisted of 3 experimental sessions on different days. Participants started with two fMRI 18 
sessions each composed of 10 consecutive runs together with different preparatory and field 19 
inhomogeneity mapping scans (about 1h each). The last session was used to obtain multiple structural 20 
images (about 45 min in total). Participants were trained on the behavioral task outside the scanner.  21 
Stimuli were presented at a viewing distance of 225 cm, on a 32-inch LCD screen (BOLDscreen, Cambridge 22 
Research Systems, Rochester, UK) situated at the end of the bore (17.8 dva horizontally by 10 dva 23 
vertically) and viewed through a mirror. The screen had a spatial resolution of 1920 by 1080 pixels and a 24 
refresh rate of 120 Hz. Button responses were collected using an MRI compatible button box (Current 25 
Designs, Philadelphia, PA, USA). The experimental software controlling the display and the response 26 
collection as well as eye tracking was implemented in Matlab (The MathWorks, Natick, MA, USA) using the 27 
Psychophysics Toolbox61,62. 28 
 Participants were instructed to continuously fixate a white bull’s-eye on a black background. The bull’s-29 
eye was composed of a central white dot of 0.04 dva radius surrounded by a white annulus of 0.4 dva 30 
radius and a line width of 0.04 dva. They were instructed to attend visual noise contained either within 31 
this central bull’s-eye (attend-fix condition, 1st, 3rd, 5th, 7th and 9th run) or within a moving bar (attend-bar 32 
condition, 2nd, 4th, 6th, 8th and 10th run). Each functional session started with 4 runs in which the fixation 33 
bull’s-eye was displayed at the screen center together with the moving bar traversing the entire screen 34 
(full-screen condition, 1st, 2nd, 3rd and 4th run). In the next 6 runs, the moving bar stimulus was displayed 35 
within a 4 dva radius aperture (0.04 dva width cosine edge between the visual noise and the background) 36 
surrounding the fixation bull’s-eye. The bull’s-eye was displayed either 4 dva to the left of the screen center 37 
(gaze left condition, 5th and 6th run), 4 dva to the right of the screen center (gaze right condition. 7th and 38 
8th run) or at the screen center (gaze center condition, 9th and 10th run). Full screen runs lasted 195 seconds 39 
(150 TRs). They were composed of 9 interleaved periods with and without the presentation of visual noise. 40 
In periods without visual noise, the bull’s-eye was shown alone for 13 seconds (10 TRs). In periods with 41 
the visual noise, the bar aperture movement direction was sequentially 180° (left), 270° (down), 0° (right) 42 
and 90° (up). The bar aperture could either be horizontally or vertically oriented, in order to be 43 
perpendicular to its movement direction. Its center moved in the bar direction on every TR by discrete 44 
steps of 0.56 dva, such that 18 vertical and 32 horizontal steps were necessary to traverse the entire 45 
screen. Gaze left, gaze right and gaze center runs lasted 158.6 seconds (122 TRs). They were composed of 46 
the same nine interleaved periods with and without the presentation of visual noise. Contrary to the full 47 
screen runs, the bar aperture movement direction was sequentially 180° (left), 0° (right), 180° (left) and 0° 48 
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(right) and the bar was always vertically oriented. Its center moved in the bar direction on every TR by 18 1 
discrete steps of 0.22 dva to traverse the circular aperture centered on the bull’s-eye. Visual noise 2 
contained within the bar aperture (1 dva width, with 0.04 dva width cosine lateral edges) and the bull’s-3 
eye was composed of distinct randomly generated pink noise (1/f) grayscale textures63 (with individual 4 
pixel of 0.04 dva width). To probe visual attention, we filtered the orientation contained within the 5 
textures to generate clockwise and counterclockwise signal textures. We defined 15 different difficulty 6 
levels by either keeping randomly generated noise or by filtering contained orientation by a von Misses 7 
distribution with standard deviation values between 10-1 (large dispersion) to 101.5 (narrow dispersion) 8 
centered around +45° or -45° relative to the vertical axis. Each bar presentations started with 400 ms of 9 
streams of unfiltered noise textures presented at 10 Hz in both the bull’s-eye and the bar aperture. This 10 
period was followed by 600 ms of clockwise or counterclockwise streams of oriented filtered noise, later 11 
followed by 300 ms of unfiltered noise streams. The period with oriented filtered noise streams was 12 
highlighted to participants with the bull’s-eye central dot displayed in black. The orientation of the filtered 13 
noise was selected randomly and independently every TR for both the bull’s-eye and the bar aperture. 14 
Participants reported the orientation of filtered noise streams presented within the bar aperture (attend-15 
bar condition) or the bull’s-eye (attend-fix condition) with left (-45° or counter-clockwise) or right thumb 16 
button presses (45° or clockwise). The difficulty of the task was titrated by a staircase procedure following 17 
a 3 down 1 up rule adjusting for the attended stream, the orientation dispersion around ±45°. Staircases 18 
started at an intermediate difficulty value (level 10) on every run. Participants had until the end of the TR 19 
to press a button if no response was registered the corresponding staircase wasn’t modified.  20 
Anatomical data preprocessing 21 
T1-weighted (T1w) images were corrected for intensity non-uniformity64. The T1w-reference was then 22 
skull-stripped. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter 23 
(GM) was performed on the brain-extracted T1w65. A T1w-reference map was next computed after 24 
registration of 4 T1w66. Brain surfaces were reconstructed using freesurfer67 and the brain mask estimated 25 
previously was next refined68, with the aid of the additional T2w acquisition. Finally, the surface 26 
reconstruction was manually edited to correct for pial segmentation errors near the boundary of the 27 
occipital lobe and the cerebellum. 28 
  29 
Functional data preprocessing 30 
For each of the 20 functional runs per participant (across all tasks and sessions), the following 31 
preprocessing was performed. First, a reference volume and its skull-stripped version were generated 32 
using a custom methodology of fMRIPrep69. Head-motion parameters with respect to the BOLD reference 33 
(transformation matrices, and six corresponding rotation and translation parameters) are estimated 34 
before any spatiotemporal filtering70. A fieldmap was estimated based on two echo-planar imaging (EPI) 35 
references with opposing phase-encoding directions71. Based on the estimated susceptibility distortion, a 36 
corrected EPI (echo-planar imaging) reference was calculated for a more accurate co-registration with the 37 
anatomical reference. The BOLD reference was then co-registered to the T1w FreeSurfer72. Co-registration 38 
was configured with twelve degrees of freedom to account for distortions remaining in the BOLD 39 
reference. The BOLD timeseries were resampled onto their original, native space by applying a single, 40 
composite transform to correct for head-motion and susceptibility distortions. Low frequency drift up to 41 
0.01 Hz of the functional time series was removed using cosine drift regressors obtained from fMRIPrep. 42 
Functional signal units were next converted to z-score. 43 
  44 
Regions of interest definition and pRF parameters 45 
We first averaged the timeseries of the 8 full screen runs, irrespective of whether participants attended to 46 
the fixation bull’s-eye or to the bar stimulus. We analyzed this fiducial averaged time series using an 47 
isotropic Gaussian pRF model15. The model included a visual design matrix (converting the visual stimulus 48 
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in an on-off contrast map for each TR), the position (x, y), the size (standard deviation of the Gaussian), as 1 
well a signal amplitude and signal baseline as parameters. The time series were fitted in two parts. The 2 
first part was a coarse spatial grid search of 40 linear steps in the 3 spatial model parameters: position (x, 3 
y), and size. A linear regression between the predicted and measured time series signal was used to 4 
determine the baseline and amplitude parameters. The best-fitting parameters of the first step were next 5 
used as the starting point of an optimization phase to produce finely tuned estimates. The visual stimulus 6 
was down sampled by a factor 8 for the first of these fitting stages. The grid search position and size 7 
parameters were distributed linearly within 20 dva from the center of the screen. In the fine search stage, 8 
we used a gradient descent algorithm starting from the obtained grid search parameters, leaving the 9 
parameter ranges essentially unconstrained. PRF polar angle maps were derived with the best explained 10 
pRF position parameters. The polar angle was drawn using Pycortex73 on an inflated and flattened cortical 11 
visualization of individual participant anatomy. The explained variance of the model set as the coefficient 12 
of determination (R2) was used to determine color transparency. From this analysis we manually defined 13 
for each participant 12 cortical visual regions of interests following pRF angle and eccentricity progression 14 
on the cortex as well as anatomical references. These regions include V1, V2 and V3, V3AB which unites 15 
V3A and V3B subregions, Lateral Occipital area (LO) which unites LO1 and LO2 subregions, Ventral Occipital 16 
(VO) including selective voxels of the ventral path, hMT+ which unites both MT and MST subregions, the 17 
inferior and superior part of the Intra Parietal Sulcus areas (iIPS and sIPS) and the inferior, superior and 18 
medial parts of the Pre Cenral Sulcus areas (iPCS, sPCS and mPCS). For each ROI, we defined the best-fitting 19 
voxels parameters as the 250 highest R2 per ROI. We evaluated the effect of the task on the explained 20 
variance of the pRFs by taking the task-related time series independently.  21 
 22 
Out-of-sample predictions 23 
We first evaluated the explained variance of retinotopic or spatiotopic pRF models by applying the 24 
parameters obtained in the full screen conditons to the gaze conditions time series. To do so, we predicted 25 
out-of-set timeseries of the gaze conditions visual designs knowing the pRF parameters of the attention 26 
task-specific full screen condition to which we either subtracted (pRFxgaze left = pRFxfull screen – 4) or added 27 
(pRFxgaze right = pRFxfull screen + 4) the gaze direction change to the pRFx parameter. Signal amplitude (beta) 28 
and signal baseline parameters were also adjusted to fit with the new timeseries. Change in explained 29 
variance between condition was computed by subtracting the averaged R2 observed in the gaze left and 30 
gaze right condition from the R2 observed in the gaze center condition. 31 
 32 
Fitting predictions 33 
We refine our analysis by determining anew the model parameters in the gaze conditions. To do so, we 34 
kept the pRFy and pRFsize parameters obtained from the full screen runs, while fitting anew the pRFx 35 
parameter as well as amplitude and the baseline. To avoid any bias toward the retinotopic or the 36 
spatiotopic model, we started the coarse fitting procedure with x coordinate spatial grids centered either 37 
on the gaze or on the screen coordinates. The best model (highest R2) was next used in the optimization 38 
phase to produce finely tuned parameters.  39 
 40 
Bayesian decoding 41 
We developed a novel method to probabilistically decode the position of our moving bar stimulus from 42 
the multivariate fMRI data, within a Bayesian framework. The method is based on the standard pRF model 43 
fitted on an independent training dataset from the same participant. Provided with a multivariate fMRI 44 
timeseries 𝑌	 = 𝑦1..",1..$ with 𝑛 voxels and 𝑡 time points, the method yields a posterior distribution 45 
𝑝(𝑥1..$ , ℎ1..$|	𝑌) over possible stimulus positions 𝑥 and heights ℎ for every frame in the time series where 46 
a stimulus was presented. The method allows to probe what bar position is represented on the level of a 47 
given ROI, on a TR-to-TR basis.  48 
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 By jointly sampling across all time points of the data concurrently, we took into account the 1 
hemodynamic delay and hemodynamic temporal smoothing in the estimation procedure. This is made 2 
computationally feasible by a state-of-the-art computational graph library developed for deep neural 3 
network training (Tensorflow), massively parallel graphics processing units for computation (GPUs), as well 4 
as Hamiltonian MCMC method74, which exploits the exact gradient functions that the "autodiff“ 5 
functionality that Tensorflow provide. 6 
 To obtain a posterior distribution over bar positions, given fMRI data, we first needed a likelihood 7 
function that describes the probability of the data given a stimulus time series 𝑆. Let’s assume 𝑆 a time 8 
series of 2D stimulus images. The likelihood function is the probability density function of a multivariate 𝑡 9 
distribution over the residuals of the pRF model with a covariance matrix 𝛴 of a multivariate t-distribution 10 
with 𝑑𝑓 degrees-of-freedom. Hence, 𝑌	 = 𝑝𝑅𝐹(𝑆;	𝜃1..") 	+ 𝜖 where 𝜖	 ∼ 𝑡(0, 𝛴, 𝑑𝑓) and thus 11 
𝑝(𝑌|𝑥1..$ , ℎ1..$; 𝜃1..", 𝛴, 𝑑𝑓) 	= 𝑡(𝑌 − 𝑝𝑟𝑓(𝑆; 𝜃1.."); 	𝛴, 𝑑𝑓) where 𝑝𝑅𝐹 is the output of a standard pRF 12 
model for the image time series 𝑆, as described in the previous section, with voxelwise position, dispersion, 13 
amplitude, and baseline parameters 	𝜃1.." estimated using standard pRF fitting methods on an 14 
independent training dataset. 15 
 The pRF function includes a convolution step where "neural" time series are convolved with a canonical 16 
hemodynamic response function. This means that the pixel intensities on timepoint 𝑡 influence the 17 
residuals and thereby likelihoods of multiple frames of neural activity data (roughly between timepoint 𝑡 18 
and 20 seconds later). This also means that different dimensions of the likelihood function that are close 19 
together in time are correlated, necessitating more advanced samplers than traditional Gibbs 20 
sampling75,76. 21 
 To estimate the noise covariance matrix 𝛴, we couldn’t use the sample covariance of the residuals of 22 
the training set, because these estimates would be highly unstable in our data regime of sparse data (a 23 
few hundred time points) and a large number of dimensions77. Therefore, we estimated a regularized 24 
covariance matrix 𝛴;, using a method developed for decoding Gabor orientations from fMRI signals in early 25 
visual areas16. Specifically, the covariance matrix estimate 𝛴; is a weighted sum of a diagonal covariance 26 
matrix 𝐼 ∘ 𝜏𝜏%, a perfectly correlated covariance matrix 𝜏𝜏%, and a matrix 𝑊𝑊%, where 𝑊 is a 𝑛 ×𝑚 27 
matrix with 𝑛 the number of voxels and 𝑚 the total number of pixels in a single stimulus image. Each 28 
element of the matrix 𝑊describes the linear weight of its respective pixel to the activation of its respective 29 
voxel. More specifically, this value is the probability density of the 𝑥 and 𝑦 coordinates for the multivariate 30 
Gaussian described by the pRF parameters 𝜃 for that voxel, multiplied by its estimated amplitude.  31 
 Thus, we assume that the covariance of the residuals of two voxels that have particularly similar pRF 32 
should generally be higher than that of those voxels of which the pRF do not overlap16–18. The complete 33 
formula for the estimated residual covariance matrix 𝛴; is: 𝛴; = 𝜌𝐼 ∘ 𝜏𝜏% + (1− 	𝜌)𝜏𝜏%	 + 𝜎2	𝑊𝑊% 	where 34 
the vector 𝜏 > 0, scalar 0 ≤ 𝜌 < 1, and scalar 𝜎2 ≥ 	0 are estimated using maximum likelihood estimation 35 
on the residuals 𝑌$'()")"* − 𝑝𝑅𝐹(𝑆$'()")"*; 	𝜃1..") of the training data, using gradient descent 36 
optimization. However, the dimensionality of the stimulus time series 𝑆 was so high (above 100,000) that 37 
it was infeasible to sample its posterior distribution. Moreover, its dimensions are not semantically 38 
meaningful. Therefore, we opted to drastically reduce the dimensionality of 𝑆 using a two-parameter 39 
stimulus model 𝑠(𝑥, ℎ) that returns a two-dimensional pixel image with a vertically centered bar of a fixed 40 
width, centered on the 𝑥 coordinate and a height of ℎ. We chose this stimulus model because both the x 41 
position and height of the bar varied over time in the gaze conditions. Note that, in the stimulus function, 42 
the pixel intensity rapidly but smoothly falls off as a sigmoidal function of distance to the border of the bar 43 
stimulus. Such a smooth functional form was necessary to keep the likelihood function differentiable and 44 
thereby Hammoltonian MCMC feasible. This way, the number of parameters of the likelihood function 45 
was heavily reduced to 2 times the number of timepoints: 𝑝(𝑌|	𝑥1..$ , ℎ1..$; 	𝜃) 	= 𝑡(𝑌	 −46 
𝑝𝑅𝐹(𝑠(𝑥1..$ , ℎ1..$);	𝜃1.."); 	𝛴, 𝑑𝑓). We reduced this number a bit further by not estimating stimulus 47 
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properties for frames where there was no stimulus bar on the screen such that the model assumed these 1 
frames to be an empty screen with a fixation bull’s-eye. 2 
 We used uniform priors on the estimated 𝑥 coordinates, restricted between the leftmost and rightmost 3 
coordinates on the screen as well as uniform priors on the height of the stimulus bar between 0 and the 4 
height of the stimulus screen. This was achieved using bijective sigmoidal transformation functions. The 5 
entire procedure was implemented in TensorFlow 2 and packaged as a freely available Python package 6 
called Braincoder (https://github.com/Gilles86/braincoder).  7 
 As a first step, a 2D grid search (position by height) was performed for every time point separately, 8 
optimizing the likelihood function with respect to single frame 𝑥 and ℎ parameters, neglecting the 9 
covariance structure of the likelihood function. After this grid search, a maximum a posteriori (MAP) 10 
estimate for the entire time series 𝑎𝑟𝑔𝑚𝑎𝑥	𝑝(	𝑥1..$ , ℎ1..$|𝑌) was estimated using gradient descent, starting 11 
from the values found in the grid search. Finally, this MAP estimate was used as a starting point for the 12 
NUTS MCMC sampler, a self-tuning Hamiltonian MCMC sampler76, to obtain samples from the posterior 13 
𝑝(	𝑥1..$ , ℎ1..$|𝑌). We used 4 independent chains, with 250 steps and 500 samples per chain. After some 14 
experimenting, we settled on an acceptance probability of 0.3 to more effectively sample our highly 15 
complex 144-dimensional posterior distribution.  16 
 17 
Reference frame index 18 
We devised a reference frame index (RFI), based on earlier work on the topic11,13. This index contrasts the 19 
ability of a spatiotopic versus a retinotopic model to explain the observed data. Specifically, it expresses 20 
the difference in explained variance between the retinotopic and the spatiotopic model as a fraction of 21 
the sum of both explained variances. Hence, the index ranges between -1 (completely and exclusively 22 
consistent with spatiotiotopic reference frame) and 1 (completely and exclusively consistent with the 23 
retinotopic reference frame): 24 

RFI =
EV+,-./0-01.2 −	EV314-.0-01.2
EV+,-./0-01.2 +	EV314-.0-01.2

 25 

Where EV is the reduction in variance from the raw data versus the residuals of the model fit EV =26 
VarRY −	YTU − 	Var(Y). Note that for the out-of-sample predictions (Figure 3) of individual PRF time series, 27 
the variance is defined on real and predicted BOLD timeseries of individual voxels. For the decoding 28 
analysis (Figure 4) the variance is defined on the actual and the decoded spatial positions of the bar 29 
stimulus. 30 
 31 
Statistics 32 
For statistical comparisons we used SciPy78 paired permutation test with 10,000 permutation 33 
bootstrapped iterations used to approximate the null distribution79. This procedure allows us to resample 34 
our data to create a distribution with randomly rearranged labels of the conditions to compare for each 35 
participant. We determined statistical significance by deriving two-tailed (see Results) p values for the 36 
comparison of the distributions of the compared conditions.  37 
 38 
Data and code availability 39 
We make available online our imaging dataset, including all derivatives and individual participant and 40 
group figures (openneuro.org/datasets/ds004091). Brain models with data analysis visualization are made 41 
available online (invibe.nohost.me/gazeprf) together with the experimental and data analyses codes 42 
(github.com/mszinte/gaze_prf).  43 
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Figure S1. Decoding uncertainty. A. Average decoded uncertainty across ROIs and participants for the gaze center (left column), 
gaze left (middle column) and gaze right (right column) conditions. Black asterisks indicate a significant difference between the 
attend-bar and attend-fix conditions (two-sided p < 0.05). B. Same results for the attend-bar (left column) and attend-fix (right 
column) conditions. Black asterisks indicate a significant difference between the gaze center, gaze left and gaze right conditions 
(two-sided p < 0.05). 
 


