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Individual risk attitudes arise from noise in 
neurocognitive magnitude representations

Miguel Barretto-García    1,2,6 , Gilles de Hollander    1,3,6, 
Marcus Grueschow    1, Rafael Polanía    4, Michael Woodford    5 & 
Christian C. Ruff    1,3 

Humans are generally risk averse, preferring smaller certain over larger 
uncertain outcomes. Economic theories usually explain this by assuming 
concave utility functions. Here, we provide evidence that risk aversion 
can also arise from relative underestimation of larger monetary payoffs, 
a perceptual bias rooted in the noisy logarithmic coding of numerical 
magnitudes. We confirmed this with psychophysics and functional 
magnetic resonance imaging, by measuring behavioural and neural acuity of 
magnitude representations during a magnitude perception task and relating 
these measures to risk attitudes during separate risky financial decisions. 
Computational modelling indicated that participants use similar mental 
magnitude representations in both tasks, with correlated precision across 
perceptual and risky choices. Participants with more precise magnitude 
representations in parietal cortex showed less variable behaviour and less risk 
aversion. Our results highlight that at least some individual characteristics of 
economic behaviour can reflect capacity limitations in perceptual processing 
rather than processes that assign subjective values to monetary outcomes.

Risk aversion is the tendency of human and non-human decision-makers 
to choose smaller certain options over larger risky ones1. While the 
population on average is risk averse, there is considerable variability 
in the individual strength of this tendency, and some people display 
risk-neutral or even risk-seeking behaviour2. Traditional economic theo-
ries account for risk aversion by the non-linear, concave shape of the 
utility function that maps monetary outcomes to subjective usefulness 
of wealth3. Such accounts thus conceptualize individual differences in 
risk aversion as differences in how the brain assigns subjective values to 
objective monetary outcomes. However, such theories fail to capture 
two key phenomena in real-life decision-making under risk4.

First, if utility functions are concave enough to account for risk 
aversion in laboratory choices involving very small amounts of money, 
then decision-makers should be risk averse even for gambles with very 
large potential gains and only moderate losses1. Human participants, 

however, do not behave according to these assumptions. Second, many 
existing utility-based theories fail to explain the stochasticity in risky 
choice: Empirical evidence consistently shows that choices vary across 
repetitions of the same choice options4–6. While this phenomenon can 
be incorporated in models by simply adding a random error term to 
the utility function7, such an approach fails to explain mechanistically 
why this choice stochasticity arises and whether it reflects some funda-
mental properties of neural computations that may lead to systematic 
biases and irrationalities.

Despite these conceptual problems, dominant neurocomputa-
tional accounts of individual differences in risk attitudes have mainly 
focussed on identifying neural valuation processes that may corre-
spond to the computations captured by the utility function. While 
consistent correlations have been found in various prefrontal and sub-
cortical regions8,9, it is still unclear from these findings what properties 
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which her brain represents magnitude information, and whether the 
noisiness (or inversely precision) of these magnitude representations 
is a stable trait that can parsimoniously account for the way in which an 
individual takes both perceptual and financial choices.

Here, we provide this evidence, by measuring the precision of 
mental and neural magnitude representations in a purely perceptual 
magnitude task and testing how these neurocognitive measures of 
perceptual magnitude precision can account for individual risk-taking 
behaviour in different contexts with varying sensory noise. By using 
a single unifying model that captures principles of magnitude repre-
sentations6,11, we can thus not only link risk aversion to estimates of 
behavioural precision of mental magnitude perception, but also to 
its neural substrate of numerical representations in the right parietal 
cortex, which we measure with functional magnetic resonance imag-
ing (fMRI).

Results
The experiment
To test whether numerical acuity is an individual neurocognitive trait 
that (1) generalizes across perceptual and economic tasks and (2) deter-
mines individual differences in risk aversion, we devised an experiment 
comprising two sets of tasks. First, we presented a perceptual magni-
tude comparison task in the MRI scanner during which participants 
(n = 64) had to indicate which of two-coin clouds was more numerous 
(Fig. 1b). This task allowed us to obtain both behavioural11 and neural 
measures23,24 of numerical acuity. Then, in a second set of experiments 
outside the scanner, we presented two sets of risky-choice tasks to 
measure individual differences in risk aversion (Fig. 1b–d). In one half of 
the risky-choice trials, we presented payoff magnitudes as coin clouds 
(Fig. 1c) and thus in the same presentation format as also used for the 
perceptual task. In the other half of trials, we presented the payoffs 
symbolically using Arabic numerals (Fig. 1d). This allowed us to test 
whether individual differences in numerical acuity and risk aversion 
generalize across non-symbolic and symbolic settings, and whether risk 
aversion decreases if stimulus discriminability is increased (that is, from 
non-symbolic to symbolic presentation). This latter hypothesis follows 
from model predictions (below) that if internal noise in magnitude rep-
resentations is reduced, any perceptual bias giving rise to risk aversion 
should also decrease. Variations in magnitude were matched across 
both risky-choice tasks, allowing explicit comparisons of precision 
between presentation formats (see Methods for details). Participants 
were not explicitly informed about the range of magnitudes before 
the experiment, but the possible payoffs were typical for the types 
of payoff given for experiments at our laboratory. To formally model 
behavioural data, we used a variant of a noisy logarithmic coding (NLC) 
model6 that builds on established models of numerical cognition11,25 
and could be fitted to all choice tasks.

A common model for perceptual and risky choice
We used the NLC model as the guiding framework to test the generaliz-
ability of numerical acuity across perceptual and risky-choice tasks 
(see Methods for more details). The NLC model posits that decisions 
maximize expected payoffs on the basis of the mean Bayesian posterior 
magnitude estimate, which systematically integrates the prior belief 
about the magnitude distribution and the noisiness of the internal 
representations of the current magnitudes at stake13. The model 
assumes that the brain represents the magnitudes of the risky payoff 
X and the certain payoff C by rx  and ry, two noisy estimates modelled 
as samples from a Gaussian distribution of logarithmically encoded 
magnitudes,

rx ∼ N(logX, ν2), rc ∼ N(logC, ν2).

Perception is formalized as a Bayesian inference process that 
combines these internal estimates with a common prior, 

of neural processing may give rise to the individual variation in how the 
brain assigns value. This is particularly unclear since these computa-
tions are often conceptualized as a final stage in the value construction 
process that draws heavily on information passed on from preceding 
sensory and cognitive processing10.

Here we test an alternative theoretical framework that explains risk 
aversion and stochasticity in risky choice not by idiosyncratic valuation 
processes, but as consequences of capacity restrictions and biases 
in the initial perception of the choice options. The core assumption 
of this framework is that even if decision-makers take risky choices 
rationally—and thus attempt to maximize the expected value of the 
payoffs from their choices—they do not have access to the objective 
information about the option payoffs but only to capacity-constrained 
internal representations of it6. That percepts of numerical magnitudes 
are noisy and subject to several biases—resembling those observed for 
lower-level sensory percepts—has been well established by decades of 
work in psychophysics. For example, perceptual judgements are sto-
chastic (that is, vary across repetitions) when human decision-makers 
need to quickly estimate or remember the numerical magnitudes 
of a set of stimuli11,12. Moreover, in purely perceptual tasks, humans 
tend to underestimate (numerical) magnitudes more strongly when 
these become larger13. Related studies in perceptual neuroscience 
suggest that noise and biases in magnitude perception may be a direct 
consequence of the noisy and logarithmic way in which numerical 
magnitudes are encoded by neurons in parietal cortex12,14–18. This offers 
the intriguing possibility that from a neurocognitive perspective, indi-
vidual differences in financial decision-making may (at least partially) 
originate from biased perception caused by properties of parietal 
magnitude processing, rather than exclusively from subjective valua-
tion processes instantiated in prefrontal and subcortical brain areas.

Recent economic models of risky choice have started to adopt this 
perspective and have proposed that risk attitudes may arise from the 
imprecision in mental representations of magnitudes6,19. These models 
assume, in line with the literature on perceptual judgements13, that 
logarithmic coding of the payoff information and Bayesian integra-
tion with an individual’s previous beliefs (shaped by more frequent 
exposure to smaller magnitudes) leads to more variable and system-
atically underestimated percepts for larger magnitudes13. This has the 
consequence that even a decision rule that is adapted to maximize 
expected payoffs can result in choices that show hallmark patterns of 
risk aversion, in a manner that depends systematically on the noisiness 
of the underlying magnitude representations6.

This perceptual account of risk aversion naturally accounts for 
two key empirical phenomena that utility-based models struggle to 
explain. First, it naturally follows that economic choices will be stochas-
tic, given that they are based on noisy mental magnitude representa-
tions20. Second, the logarithmic compression of mental magnitude 
representations can explain why participants are risk averse even for 
arbitrarily small gambles1,21, since diminishing sensitivity for different 
payoffs should simply be a function of the log-ratio of potential payoffs 
(that is, the distance on a logarithmic scale), irrespective of overall 
magnitude20. Crucially, the perceptual account of risk aversion also 
makes the prediction that individual or situational differences in risk 
aversion should be negatively related to the precision of the mental 
magnitude representations currently used by the decision-maker13,20,22.

While these theories thus formalize how apparent risk aversion 
may emerge from biased perception and the noise in magnitude repre-
sentations, empirical support for these theories is limited. In particular, 
the existing studies have fitted their model to a single economic choice 
task and have inspected the relation of the fitted parameters with the 
choice variability in the same dataset6,19. No study so far has examined 
such links across different tasks, or linked any of these behavioural 
measures of risk preferences to characteristics of the neural coding of 
magnitudes. It is therefore unclear whether an individual’s risk aversion 
can indeed be traced back, in a mechanistic sense, to the acuity with 
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logX, logC ∼ N (μ, σ2)  that specifies the distribution of numerical 
magnitudes the decision-maker expects to encounter in the testing 
environment. Central to the model is the individual parameter ν that 
represents the noise of the internal representations of numerical 
magnitudes. The parameter, σ , on the other hand, is the width of the 
prior that accounts for the dispersion of numerosities that the 
decision-maker deems plausible. The decision process involves 

optimization of the expected payoff on the basis of the mean poste-
rior magnitude estimate

𝔼𝔼𝔼X|r] = exp(α + βrx), 𝔼𝔼𝔼C|r] = exp(α + βrc)

where β = σ2

σ2+v2
 is a multiplier that determines the weight of the noisy 

estimate r relative to the prior and α = (1 − β)μ is a constant, where μ, 
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Fig. 1 | The NLC model, experimental model and behavioural results. a, The 
NLC model postulates that noisy magnitude encoding increases systematically 
with magnitude in linear space, represented as wider Gaussians as magnitudes 
increase (left, top). More variable choice behaviour increases in magnitude, 
expressed as shallower psychometric slopes (left, bottom). ‘Reference’ refers to 
the magnitude of the first set of coin clouds during the perceptual task or sure 
payoffs in risky choice. The Gaussians are encoded logarithmically, suggesting a 
lognormal noise distribution that is similar for all magnitudes in log space 
(middle, top), resulting in similar psychometric slopes (middle, bottom). These 
properties result in scale invariance in the log-ratio between magnitudes and 
reference (right, top) so that a single psychometric curve captures choice 
behaviour across all magnitudes (solid gradients of blue at right, bottom). 
Finally, the NLC model predicts that the precision in magnitude representation is 
directly related to risk aversion. Relative to the indifference point of a risk-neutral 
individual with precise representations (intersection of blue dashed step 
function and horizontal line at right, bottom), an individual with noisier 

representations has shallower and right-shifted psychometric curves, resulting 
in only 30% of risky choices at the risk-neutral indifference point (intersection of 
solid psychometric function and dashed blue step function). The simultaneous 
change in slope and intercept is captured by the negative correlation between the 
precision of magnitude representation and risk aversion. b, Participants 
performed a numerical decision-making task inside the MRI scanner. On every 
trial, two clouds of 1-CHF coins were presented sequentially and participants had 
to indicate which of the two clouds contained more coins. We collected both 
neural and behavioural measurements to estimate the precision of the 
magnitude representations used for the task. c,d, Outside the MR scanner, 
participants took risky choices in which they had to choose either a risky gamble 
or a sure offer. We visually displayed the potential payoffs of offers as either 
non-symbolic coin clouds similar to the perceptual task (c) or symbolic Arabic 
numerals (d). Probabilities were presented as pie charts. We fixed the 
probabilities at p = 0.55 in favour of the risky monetary offer.
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σ2 determines the location of the lognormal prior distribution. The 
larger the noise in mental magnitude representations r  (reflected by 
a larger ν), the shallower and more regressive the expected-value func-
tion over the payoffs.

With these underlying representational mechanisms, we can 
derive a psychometric function and thus the probability with which 
the decision-maker chooses the risky option with payoff X  over the 
safe option with payoff C:

Pr(choose risky|X,C) = Φ ( log(X/C) − β−1 logp−1

√2v
)

where Φ(·) is the standard normal cumulative density function that 
maps the choice of the risky option with payoff X  over the sure option 
with payoff C  into the probability Pr (choose risky|X,C) , and p is the 
probability of the risky payoff. In our task, X  and C  represent the objec-
tive magnitudes of the second- and first-coin clouds during the per-
ceptual magnitude task and the magnitudes of the risky and certain 
payoffs during the risky choice task, respectively. We can conveniently 
estimate the NLC parameters using a standard probit model,

Pr (choose risky|X,C) = Φ (γlog (X
C
) − δ) .

This parametrization is equivalent to the NLC via the relationships 

in the slope, γ = 1
√2v

, and intercept, δ = ( β−1log(p−1)
√2ν

).

The following are key measures for our analysis. First, the slope γ 
captures the precision in mental magnitude representations (the inverse 
of noise, √2ν) while the intercept δ  captures the indifference point 
between both options. More precisely, the indifference point θ = exp ( δ

γ
) 

is where the individual is indifferent in choosing between rx   

and rc. A crucial corollary of locating the indifference point is the ability  
to index risk aversion as risk-neutral probability πrisk = exp (− δ

γ
) ,  

the probability level at which the decision-maker should be indifferent 
between the risky and the safe option. The NLC prescribes that a 
decision-maker with imprecise mental magnitude representations 
should show πrisk < 0.55 and thus behave as if the probability of receiv-
ing the risky payoff is smaller than it actually is (which, by definition, 
is apparent risk aversion). The ‘risk-neutral’ probability during the 
perceptual magnitude comparison task, on the other hand, should 
trivially be πperceptual = 1, since both options are associated with the 
same degree of (subjective) uncertainty.

The NLC model is a better account for risky-choice behaviour 
than established utility-based models
As a necessary condition, we established that our perceptual account 
of risk aversion can capture the empirical data at least as well as dom-
inant economic theories. We used formal techniques to compare 
the NLC model’s fit to the risky choice data with the fits of classical 
decision-making theories such as expected utility maximization, cumu-
lative prospect theory and salience theory, all in logit and probit form 
(see Methods for details). The formal model comparison revealed that 
the NLC model fit the data best, since it always had the lowest devi-
ance information criterion (DIC), regardless of presentation format 
(Extended Data Fig. 1a,b). This underlines the plausibility of the neu-
rocognitive operations formalized in the model.

Decoding magnitude from neural activity
The NLC model assumes that both numerical magnitudes and poten-
tial payoffs are represented in the same noisy logarithmic man-
ner. This builds on established neuroscientific findings that neural 
population activity in numerical parietal cortex (NPC) is tuned to 

numerical magnitudes, with the width of neural tuning reflecting 
moment-to-moment noisiness (or inversely, precision) of neural 
magnitude representations across repeated stimuli23. We directly 
tested these implicit, mechanistic links between neural and cogni-
tive magnitude representations, by investigating the relationship 
between behavioural precision in the perceptual magnitude task 
and the fidelity of parietal magnitude representations measured by 
blood-oxygen-level-dependent (BOLD)-fMRI during the perceptual 
decision-making task24. To this end, we fitted a numerical population 
receptive field (nPRF) model that assumes that every patch of (parietal) 
cortex responds to a specific part of the number line, with its response 
profile characterized as a Gaussian kernel on the logarithmic number 
line (Fig. 2a)15,23. We plotted the centre of the tuning curve for every 
vertex and averaged across the 64 participants on a standard brain 
surface (fsaverage), and thresholded this map by the average explained 
variance R2 of the nPRF model (Fig. 2b).

We found that large regions in parietal cortex were sensitive to 
numerical magnitude stimuli. Many of these were topographically 
organized according to their most-preferred magnitude (Fig. 2b), 
thus replicating related findings of topographic neural magnitude 
representations in parietal cortex15,16,23. Given established links 
between neural decoding accuracy in the (right) intraparietal region 
and task performance18,26, we manually segmented a region between 
the intraparietal sulcus (IPS) and the precentral sulcus that was both 
magnitude-sensitive and showed topographic organization. The region 
was qualitatively similar to the NPC1, NPC2 and NPC3 regions defined 
by Havey et al.15,23; we therefore labelled it the ‘NPC’ region. Notably, 
it also included both the lateral and ventral parietal cortex reported 
in previous work18,26. Even though behaviourally relevant magnitude 
representations have been reported to be right lateralized18,26, our goal 
for the initial mapping analyses was to have two unbiased hemispheric 
regions of interest that included all earlier reported regions and let our 
Bayesian decoder decide on a person-to-person basis which subregions 
(that is, vertices) were most informative. We chose this integrated 
approach over the use of multiple statistical tests for many individual 
regions of interest, since it has higher statistical sensitivity as needed 
for our study on individual differences in n = 64 people.

The neural magnitude representations in this NPC area were 
indeed highly specific, as we ascertained by inverting the encoding 
model and decoding the presented stimulus from NPC-BOLD activity 
patterns in held-out data. This worked better than chance (16.67%) in 
56 out of 64 participants in left NPC (average accuracy 23.6%, s.d. 5.4%) 
and 60 out of 64 participants in right NPC (average accuracy 23.8%, s.d. 
5.2%). These accuracies were significantly different from chance-level 
decoding (16.67%) at the group level (t(63) = 10.4, P < 0.001, Cohen’s 
d = 1.30, 95% confidence interval (CI) of (0.22, 0.25) for left NPC and 
t(63) = 11.0, P < 0.001, Cohen’s d = 1.36, 95% CI = (0.23, 0.25) for right 
NPC). To make our results comparable to a recent study of perceptual 
accuracy18, we also computed the accuracy with which our decoder 
picked the right stimulus pair from all possible pairs. The average 
pairwise decoding accuracy was 59.1% for the left NPC and 59.0% for 
the right NPC. This is higher than the 56.7% accuracy reported by the 
previous study18, even though those authors tested within a smaller 
number of stimulus categories (two sets of three). We speculate that 
our increased decoding accuracy might be explained by the use of a 
model-based encoding–decoding framework that explicitly accounts 
for the non-linear tuning functions in parietal cortex that have been 
found in studies in both human and non-human primates12,23,27. Linear 
multivariate pattern analysis methods, such as the support vector 
machine used in the previous study18 may be less well suited to decode 
such non-linear tuning functions. Misclassified stimuli were usually 
classified as a stimulus relatively close in magnitude (Fig. 2d). However, 
in line with the notion that magnitude representations may be right 
lateralized18, the average within-participant correlation between the 
presented magnitude and the mean decoded posterior was twice as 
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high for right NPC (r(239) = 0.216) than for left NPC (r(239) = 0.117) 
(paired t-test: t(63) = 6.17, P < 0.001, Cohen’s d = 0.83, 95% CI = (0.07, 
0.13)). Indeed, the standard deviations of the decoded posterior were 
also smaller (right, 6.9 versus left, 17.4).

Behavioural differences in numerical acuity relate to  
the precision of neural magnitude representations
Crucially, our neural model allowed us to not only identify neural mag-
nitude representations in parietal cortex, but also to derive a standard 
index of how precisely magnitudes are represented by neural popula-
tion activity24,28: We can measure each individual’s general degree of 
neural precision in encoding magnitudes by the mean precision, 1

s.d.
, 

of the posterior across all stimulus categories (Fig. 3e, red arrow).  

The NLC model implicitly assumes that its measure of precision in  
mental magnitude representations should reflect the precision of  
the corresponding neurobiological representations. Consistent with 
this hypothesis, we found significant positive correlations between 
each participant’s performance on the perceptual task (measured by 
the precision parameter, γperceptual) and the index of general neural  
precision ( 1

s.d.
 of decoded posteriors, averaged over all six stimuli  

categories) in right NPC (rright (62) = 0.404, P < 0.001, 95% CI =  

(0.180, 0.590); Fig. 2e) and to a certain extent also in left NPC 
(rleft (62) = 0.300,P = 0.0168, 95% CI = (0.06, 0.51)). This confirms a 
strong link between the noise in neural representations of numerical 
magnitudes and variability in performance during magnitude percep-
tion, in particular for right NPC. Congruent with this apparent right 

r = 0.30, P = 0.017 r = 0.40, P < 0.001 
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Fig. 2 | Neural magnitude representations in parietal cortex. a, Illustration of 
the nPRF model. Bar plots represent hypothetical mean BOLD response to 
different magnitudes and their standard error. Dotted lines are Gaussian kernels 
fitted to these response profiles. P(Y|s) defines the encoding model, which maps 
stimuli s to voxelwise time series plus their multivariate noise distribution (Y). We 
refrain from presenting real data since we collected data for 64 participants, each 
with hundreds of IPS vertices, precluding us to concisely show representative 
data. The lognormal nPRF model has been validated before by Harvey et al.15,23.  
b, In line with earlier work, we found topographic organization of different 
numerosity preferences in bilateral NPC. c, Illustration of decoding using 
Bayesian model inversion. Bar plots (left, top panel) are hypothetical estimates of 
BOLD activation responses to unseen stimuli and their standard errors (shaded 
area). P(s|Y) represents the inversion of the encoding model and maps trialwise, 
multivariate BOLD activation patterns in IPS to posterior distributions over 
possible magnitudes. Bayesian inversion of the PRF model yields a posterior 
distribution over possible stimulus magnitudes, given the BOLD activity pattern. 
Our measure of imprecision in the neural magnitude representation is the 
standard deviation of this posterior (middle panel). Peaks of the posterior’s 

bimodal distribution (solid vertical lines, middle panel) represent the most likely 
stimulus, according to the BOLD activation in a single cortical location (loc.) with 
a single receptive field (solid horizontal lines, top panels). Shaded areas 
correspond to the standard deviations of the beta estimates in the left panel. 
Multivariate information is integrated into a single posterior that quantifies the 
probability of possible magnitudes eliciting the multivariate BOLD response 
pattern (bottom panel). d, Confusion matrices show, for every stimulus category 
(rows), how often the decoder classifies trials as one of six possible stimulus 
categories (columns). All entries on the diagonal correspond to correctly 
classified stimulus categories, whereas off-diagonal categories represent 
misclassifications. Diagonal entries are always higher than the off-diagonal 
entries and entries near the diagonal are usually higher than entries further from 
the diagonal. More extreme magnitudes are decoded with higher fidelity. e, The 
neural precision, 1

s.d.
 of the decoded posteriors (n = 64) is significantly correlated 

with the precision of mental magnitude representations during the perceptual 
decision-making task, as indexed by the parameter γperceptual. P values were 
estimated from one-sided Pearson correlations.
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Fig. 3 | Domain-generality of scale invariance across perceptual and 
risky-choice tasks. a,b, Observed probabilities (n = 64) of choosing the second 
stimulus for magnitude judgements (left) or the risky option (middle and right) 
plotted in linear space (a) and logarithmic space (b), separated by visual display 
type (non-symbolic payoffs, middle and symbolic payoffs, right). The six 
psychometric curves correspond to the magnitudes of the first stimulus arrays in 
the magnitude task or sure offers in the risky-choice task. Fits used linear and log 
models using a subset of the magnitude and risky offers as a subset of their 
respective reference magnitudes and/or offers. c, Observed choice probabilities 
plotted as the ratio of the second- and first-coin cloud magnitudes (magnitude) 
or risky and sure payoffs (risky-choice). Initial inspection similar psychometric 
curves irrespective of task domain or visual display, suggesting common 
logarithmic magnitude coding across tasks. Moreover, the six psychometric 
slopes stack over each other, and we can fit a single psychometric curve (solid 
black curve) to account for all choice probabilities in all task domains and visual 

displays. The coloured dashed psychometric curves used the NLC to fit a subset 
of offer or magnitude distributions conditional on the reference. The 
intersection of the horizontal and vertical dashed lines represents the point 
where the individual is indifferent between choosing the risky and sure payoffs. 
Data points are pooled across participants and error bars on each circle represent 
s.e.m. The solid vertical line represents the indifference point of a risk-neutral 
individual. d, DIC difference between the best model (the NLC with one slope 
parameter for all experimental conditions) and the competing unrestricted 
model with separate slopes for each combination, for all types of choice and 
display. e, Dispersion (s.d.) of the decoded posteriors (n = 64) increases as a 
function of stimulus magnitude—a hallmark of scale invariance. We quantified, 
on a person-to-person basis, both average neural precision ( 1

s.d.
 of the posterior) 

across magnitudes and neural diminishing sensitivity, the extent to which neural 
representations get noisier as a function of stimulus magnitude. Error bars are 
s.e.m. across participants.
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lateralization, earlier studies had found similar brain–behaviour rela-
tionships mainly for the right parietal cortex18,26.

Evidence that similar logarithmic magnitude representations 
may guide both perceptual and risky choices
A central assumption of the NLC model is that noisy logarithmic mag-
nitude representations should be scale invariant, which should be 
evident in at least two ways: (1) the probability of choosing the second 
coin cloud in the perceptual task and the risky gamble in the risky choice 
task should be determined by the log-ratio of the two magnitudes, X

C
, 

rather than by their absolute magnitudes (Fig. 1a, middle and right); 
and (2) the noise in internal magnitude representations should increase 
with magnitude (Fig. 1a, left). To visually test for these hallmark signs 
of the representations assumed by the NLC model, we plotted the prob-
abilities of judging the second set of coins larger than the reference 
stimulus (Fig. 1b) or choosing the risky gamble over the sure gamble 
(Fig. 1c,d) in both linear (Fig. 3a) and log (Fig. 3b) spaces. We used a 
hierarchical Bayesian framework (Methods) to fit the psychometric 
curves. This approach models individual-level variability explicitly 
when estimating group-level parameters. Initial visual inspection 
already shows that in linear space, the choice curves vary differently 
and are skewed. But when replotted on a log scale or a log-ratio scale, 
the slopes (γ) become very similar to each other (Fig. 3c), suggesting 
scale invariance. We also formally tested for scale invariance by com-
paring model fits of a single NLC psychometric curve to an unrestricted 
model that separately fitted six such psychometric curves for each of 
the six reference stimuli. Model comparisons revealed that the NLC 
model’s single psychometric curve fitted to all magnitude stimuli 
explained the data far better than the unrestricted model (Fig. 3d), 
thus confirming scale invariance in the choice data and replicating 
previous results6. Note that the aggregate choice curves for the risky 
choice task never reach a choice proportion of 1, not even for the most 
attractive risky offers. However, 35 participants in the non-symbolic 
task and 40 participants in the symbolic task did choose the risky option 
in 100% of the trials for the highest offers (Extended Data Figs. 2 and 3). 
The remaining participants had relatively shallow choice curves and 
were, in particular, risk averse (Extended Data Figs. 2 and 3). This sug-
gests that lapses29 did not occur often and are thus unlikely to influence 
our further results.

Crucially, we also tested whether scale invariance applies to the 
neural magnitude representations identified with our encoding and/
or decoding approach. In addition to the precision of neural representa-
tions across all magnitude levels (mean precision, 1

s.d.
, Fig. 3e, red 

arrow), we could also derive a measure of neural diminishing sensitivity. 
The slope of the regression of the decoded posterior’s mean s.d. on 
stimulus magnitude, indexing how strongly, in a given individual, 
neural representations become less precise with increasing magnitudes 
(Fig. 3e, green arrows). Note that the first measure (neural precision) 
can be contaminated by non-cognitive factors unspecific to magnitude 
coding, such as size of the cortical sheet, neurovascular coupling, 
attention, and head movement30. The second measure (neural dimin-
ishing sensitivity) is less likely to be affected by such unspecific general 
noise factors, which presumably do not vary systematically with 
trial-wise stimulus magnitudes. Thus, for participants who exhibit 
imprecision specifically in the neural coding of magnitudes, and for 
whom this coding follows scale invariance, we expect the slope of 
decoding uncertainty across magnitude levels to be systematically 
higher, on top of any general neural noise also affected by non-cognitive 
noise sources.

Confirming neural diminishing sensitivity, we found that the larger 
the stimulus magnitude, the noisier the neural magnitude representa-
tion in left NPC (Fig. 3e, left panel, repeated measures correlation, 
r (319) = 0.23,  P = 0.001,  95%CI = (0.13,0.34) ), but this effect was 
much more pronounced in the right NPC (Fig. 3e, right panel,  

ey r (319) = 0.43,P < 0.001, 95% CI = (0.34,0.52)). These results again 
confirmed an apparent right lateralization for the neural locus of the 
approximate numerosity judgements, of which diminishing sensitivity 
is a hallmark phenomenon. In sum, the initial analyses of the parietal 
number representations show that, compared to the left NPC, number 
representations in the right NPC (1) are easier to decode, (2) more 
closely relate to individual differences in numerical acuity and (3) show 
stronger diminishing sensitivity. We thus opted to use neural record-
ings from the right NPC to derive the index of the precision of neural 
magnitude representations for all subsequent analyses on the link 
between risky choice and NPC activity.

The NLC captures how noise in magnitude representations 
mechanistically leads to perceptual bias and risk aversion
A crucial implication of the NLC model is that it specifies the link between 
magnitude representation noise and the point at which participants 
become indifferent between the choice options. Specifically, the nois-
ier the magnitude representation, the more influential the prior distri-
bution becomes and the more the magnitude of the risky option will be 
underestimated compared to the safe option (see Extended Data Fig. 
4 for more detail). In pure magnitude perception, where it is known 
a priori that there is no outcome uncertainty, the individual’s indiffer-
ence point should lie around θperceptual ≈ 1, the point where both mag-
nitudes are equal, X = C . In risky choice, the objective outcome 
probability P = 0.55 should lead to an indifference point θ = X

C
 = 1

0.55
 

for perfectly precise magnitude representations (ν = 0). However, any 
degree of noise ν > 0  will shift the indifference-point threshold to 
θ > 1

0.55
 and thus to apparent risk aversion, since people become indif-

ferent only for larger X at the given P. This prediction by the NLC should 
be evident by the location of the probit intercept, which should not be 
statistically different from zero (δ = 0) for perceptual judgements but 
greater than zero (δ > 0) for risky choice.

Indeed, population-level posterior distributions of the intercept 
estimated with a hierarchical Bayesian framework were all in line with 
model prescriptions (Extended Data Fig. 5a, δperceptual = −0.168,  
PMCMC = 0.204 ; Extended Data Fig. 5b, δnon−symbolic = 2.41  and 
δsymbolic = 2.97 , PMCMC < 0.001  for both measures). Post hoc tests 
showed no evidence of an effect for the indifference-point threshold 
in perceptual magnitude (Extended Data Fig. 5c, θperceptual = 0.95 , 
PMCMC = 0.204) while the indifference points for risky payoffs across 
visual presentation formats were greater than 1

0.55
 (Extended Data Fig. 

5d (left panel), θnon−symbolic = 2.46 and θsymbolic = 2.24, PMCMC < 0.001 
for both measures). Given that previous work14 only tested the NLC 
within a single economic choice task, our study provides new evidence 
that the mechanisms embedded in the model can flexibly account for 
biases in both perceptual and risky economic choices.

Similar magnitude representations guide risky choice across 
visual display formats and individuals
The NLC model defines the noisiness of mental magnitude representa-
tions ν  as a function of γ, the precision with which individual 
decision-makers can mentally differentiate magnitude stimuli. At the 
same time, the NLC model assumes that choice behaviour should inde-
pendently be influenced by different beliefs about the variability of 
magnitudes in the environment (measured by the width of the prior, σ) 
as well as by sensory noise in the stimulus display (which should also 
affect the precision of magnitude representations). However, these core 
features of the NLC model have thus far remained untested, since previ-
ous studies have related the risk-neutral probability π  (which is smaller 
for larger risk aversion) to the precision in mental magnitude represen-
tation γ only for parameters fitted to a single economic task with only 
one type of visual display (for example, symbolic payoffs). If γ really 
reflects an individual trait, then the relationship between π  and γ should 
generalize across tasks and variations in sensory noise; but the sensory 
noise level should nevertheless have systematic effects on risk aversion.

http://www.nature.com/nathumbehav
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We tested this hypothesis by comparing the same risky choices 
presented either symbolically as numbers or non-symbolically as coin 
clouds (Fig. 1c,d). First, we predicted that individuals should be more 
risk averse when faced with non-symbolic payoffs, since symbolic 
payoffs are easier to identify and map onto mental magnitude repre-
sentations (note that the distribution of stimulus magnitudes was 
identical for non-symbolic and symbolic payoffs, so the prior between 
the two stimulus displays should be no different). Second, we expected 
that we will replicate previous results of a positive and non-linear rela-
tionship between risky payoff precision γrisky and risk-neutral probabil-
ity π  (ref. 6) for both display formats, and that each individual’s 
magnitude precision will be related across the two visual  
display formats.

Our results confirm all these predictions. Population-level poste-
rior distributions of the corresponding parameters confirmed that 
representations of non-symbolic payoffs were less precise than sym-
bolic ones (Fig. 4a, γnon−symbolic = 2.76, γsymbolic = 3.56, PMCMC < 0.001) 
and that the individual indifference points between risky and sure 
gambles were indeed higher during non-symbolic payoff presentations 
(θnon−symbolic > θsymbolic  (Extended Data Fig. 5d (right panel), 
PMCMC = 0.005). As expected given the noisiness of mental magnitude 
representations, risk aversion was substantial for both display formats 
(Fig. 4c (top-right panel), πnon−symbolic = 0.408,πsymbolic = 0.448  are 
less than 0.55,PMCMC < 0.001 ) and risk-neutral probabilities were 
indeed systematically smaller (corresponding to more risk aversion) 
for non-symbolic payoff display formats (Fig. 4c (middle-right panel), 
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Fig. 4 | Noise in mental magnitude representations is individually robust 
across different types of visual display of risky prospects. a–c, Population 
posterior distributions of risky payoff precision (a), the prior (b) and risk 
aversion (c) for risky symbolic payoffs and risky non-symbolic payoffs in 
risky-choice behaviour. Top plots are distributions for both types of display 
(symbolic payoffs in blue, non-symbolic payoffs in yellow) while bottom plots are 
distributions of differences between display formats (in pink). Bayesian P values 
were calculated. The light-shaded mass of the highest density interval covers 95% 
of the posterior distribution while the dark-shaded tail ends represent 5% of the 
posterior distribution. In top plots, the vertical dashed line represents the 
‘rational’ risk-neutral probability, P = 0.55, whereas in bottom plots, it represents 

zero. Representations were more precise during symbolic payoffs, γsymbolic,  
than non-symbolic payoffs, γnon−symbolic. This is reflected as larger risk aversion 
(or lower risk-neutral probability) for non-symbolic payoffs, πnon−symbolic relative 
to symbolic payoffs, πsymbolic. There is no difference between the priors, 
σnon−symbolic and σsymbolic. d,e, Individual measures of risky payoff precision  
(d) and risk-neutral probability (e) for symbolic and non-symbolic payoffs 
(n = 64) are related: the two measures are positively correlated. The shaded area 
around the regression line represents 95% confidence intervals. The black dashed 
line represents the identity line. P values were estimated from one-sided Pearson 
correlations.
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PMCMC = 0.005 ). These differences in the indifference point and 
risk-neutral probability did not appear to reflect different beliefs about 
stimulus magnitude distributions, since the estimated priors were not 
different between non-symbolic and symbolic payoffs (Fig. 4b, 
σnon−symbolic = 0.366, σsymbolic = 0.343, PMCMC = 0.204).

We also compared the precision of mental representations 
between both tasks. Given the experimental set-up, one would  
expect that the magnitude representations for the non-symbolic  
coin clouds in the perceptual magnitude task should be less precise 
than for the symbolic payoffs in the risky choice task, but more  
precise than for the non-symbolic risky payoffs. This is because  
internally representing non-symbolic risky payoffs requires the  
integration of both coin cloud stimuli and probability information. 
Group-level posterior distributions confirmed this conjecture 
(γperceptual > γnon−symbolic, PMCMC = 0.008, Extended Data Fig. 6b (left 
panels) and γsymbolic > γperceptual, PMCMC < 0.001 , Extended Data Fig. 
6b (right panels)).

In line with our second hypothesis—that common magnitude repre-
sentations are used during both display types, but are subject to differing 
sensory noise—we found significant positive correlations across visual 

d i s p l ay  t y p e s  b e t we e n  t h e  r i s k  p re c i s i o n  m e a su re s  
(Fig. 4d, rγ (62) = 0.778,P < 0.001, CI = (0.657, 0.859)), the measures for 
the indifference point (Extended Data Fig. 5e, rθ (60) = 0.703,P < 0,001, 
95% CI = (0.549, 0.810)) and the risk-neutral probabilities (Fig. 4e, 
rπ (62) = 0.772,P < 0.001, 95%CI = (0.649, 0.855)). These results were 
also observed with non-parametric and robust statistical tests (Supple-
mentary Table 1). Finally, we correlated the risk-neutral probability π  with 
precision γ for both visual displays (Fig. 5a). The significant positive correla-
tions (rnon−symbolic (62) = 0.734,P < 0.001, 95%CI = (0.596, 0.830) ; 
rsymbolic (62)  = 0.567,P < 0.001, 95%CI = (0.374, 0.714) ) ;  see Sup-
plementary Table 1 for non-parametric and robust statistical tests) repli-
cate previous findings6 but also provide the new result that individual risk 
attitudes are related to the precision of mental magnitude representations 
in a way that is robust to sensory noise inherent in specific visual displays. 
The observed relationship between risk-neutral probability and risk payoff 
precision was also well-described by the following non-linear formula 
derived from the NLC model (dotted lines in Fig. 5):

π = 0.55(1+
1

2σ2γ2
).

This relationship also allowed us to estimate the dispersion of the 
prior distributions over magnitudes used by the participants, assuming 
a common prior that was estimated separately for each task 
(σnon−symbolic = 0.366 and σsymbolic = 0.343). The prior dispersion was 
indistinguishable between the two presentation formats 
(PMCMC = 0.204) but was substantially lower than the objective prior 
(σobjective = 0.74 for the risky choice task and σobjective = 0.88 for the 
perceptual task).

Risk aversion in financial choices correlates with precision  
in mental magnitude representation during the independent 
perceptual task
We tested whether the individual precision of mental magnitude 
representations generalizes across both perceptual and risky 
decision-making tasks, and whether risk aversion in the financial 
choices can thus be predicted by the preceding and fully independent 
perceptual task. Initial inspection using raw behavioural measures 
of perceptual accuracy and risk performance already hinted at such 
a relation, for both display formats (see Extended Data Fig. 7 and 
Supplementary Table 2 for non-parametric and robust statistical 
tests). However, raw choice proportions reflect a mix of perceptual 
and risk sensitivity along with response bias as well as response noise, 
leaving it unclear which aspect of choice behaviour is driving these 
relations31. We thus used the NLC model to decompose choice behav-
iour into sensitivity, bias and response noise measures. We first cor-
related across participants the slopes of the psychometric curves of 
the perceptual magnitude decision-making task γperceptual  and the 
two analogous ‘consistency’ slopes of the two risky-choice tasks 
γnon−symbolic  and γsymbolic (see Extended Data Fig. 6a and see Supple-
mentary Table 1 for non-parametric and robust statistical tests). In 
line with a shared representational mechanism, we found significant 
p o s i t i v e  c o r r e l a t i o n s  f o r  b o t h  d i s p l a y  f o r m a t s 
( rnon−symbolic (62) = 0.349,P = 0.002 ,  95% CI = (0.113, 0.548); 
rsymbolic (62) = 0.437,P < 0.001 , 95% CI = (0.215,0.617)). Second, we 
tested whether individual apparent risk aversion was systematically 
related to the precision of mental magnitude representations from the 
separate perceptual task. Indeed, we found significant positive correla-
tions between our measure of perceptual precision γperceptual and the 
risk-neutral probabilities for both types of financial choice πnon−symbolic  
and πsymbolic  (Fig. 5b, rnon−symbolic (62) = 0.350,P = 0.002 , 95% 
CI = (0.114, 0.548); rsymbolic (62) = 0.283,P = 0.012 , 95% CI = (0.040, 
0.494); see Supplementary Table 1 for non-parametric and robust 
statistical tests). This provides new evidence that common mental 
magnitude representations are used as basis for both perceptual and 
economic choices, and that seemingly irrational biases in economic 

b

a Non-symbolic
Ri

sk
-n

eu
tr

al
 p

ro
ba

bi
liy

Ri
sk

-n
eu

tr
al

 p
ro

ba
bi

liy

Ri
sk

-n
eu

tr
al

 p
ro

ba
bi

liy
Ri

sk
-n

eu
tr

al
 p

ro
ba

bi
liy

0.8

0.6

0.4

0.2

0

0 1 2 3 4 0 1 2 3 4 5 6

0 1 2 3 4 0 1 2

Risky payof f precision Risky payof f precision

Magnitude precision Magnitude precision
3 4

0.8

0.6

0.4

0.2

0

0.8

0.6

0.4

0.2

0

0.8

0.6

0.4

0.2

0

Symbolic

r = 0.567
P < 0.001

r = 0.734
P < 0.001

r = 0.350
P = 0.002

r = 0.283
P =  0.012

Fig. 5 | The precision of mental magnitude representations systematically 
relates to individual risk attitudes. a, The estimated precision of the 
representation of potential payoffs, γnon−symbolic and γsymbolic, and the index of 
risk aversion (measured by individual risk-neutral probability, πnon−symbolic and 
πsymbolic) (n = 64) are related across all visual displays. The curved dotted line is 
the prediction from the psychometric model linking the relationship between 
risk payoff precision and risk-neutral probability under the assumption of a 
common lognormal prior. The common prior we used to fit the curve for each 
presentation format (σnon−symbolic and σsymbolic) was estimated using the 
non-linear relationship formalized by the NLC model (Methods). Participants 
(represented as circular dots) whose risk-neutral probability are on the 
horizontal dashed line are risk-neutral while participants below the dashed line 
are risk averse and participants above the dashed line are risk-seeking. b, The 
estimated precision of magnitude representations during perceptual decision-
making and individual risk attitudes (n = 64) are related, consistently across 
visual display type. The shaded area around the regression line represents 95% 
confidence intervals. The horizontal dashed lines represent risk-neutral 
behaviour while the curved dotted line is now the prediction linking risk-neutral 
probability with magnitude comparison precision. P values were estimated from 
one-sided Pearson correlations.
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choice may in fact be rooted in basic properties of perceptual mag-
nitude representations.

Risk aversion is related to the precision of neural magnitude 
representations
Our findings so far indicate that both perceptual and risky financial 
choices are determined by the noisiness of domain-general magnitude 
representations that are similarly used across different types of task 
and visual display. We finally tested to what degree this noise and the 
ensuing risk aversion in financial choices is also related across purely 
behavioural and neural measurement techniques, as already shown 
in the perceptual domain18,26. Such a relation would entail that just by 
measuring the noise in perceptual neural magnitude representations 
with fMRI, one would already gain information about an individual’s 
risk aversion in future financial choices.

To test this hypothesis, we first examined whether the precision  
of risky-choice behaviour γrisk and the risk-neutral probability π  were 
correlated with the precision of the neural magnitude representations 
in right NPC. While we found no significant correlation  
between risk precision γrisk  and the neural precision measure for  
either display ( rnon−symbolic (62) = 0.122,P = 0.17, 95% CI = (−0.13, 0.36); 
rsymbolic (62) = 0.118,P = 0.177 , 95% CI = (−0.13,0.35 ); Extended  
Data Fig. 6c), we found a significant correlation with  
neural diminishing sensitivity for non-symbolic payoffs 
( rnon−symbolic(62) = −0.213,P = 0.045 , 95% CI = (−0.44, −0.03 );  
Extended Data Fig. 6d, orange markers). Correspondingly, for 
non-symoblic payoffs, risk-neutral probability π  correlated significantly 
with both neural precision (rnon−symbolic (62) = 0.258,P = 0.020 , 95% 
CI = (0.01, 0.47); Fig. 6a, orange markers) and with neural diminishing 
sensitivity (rnon−symbolic (62) = −0.268,P = 0.016 , 95% CI = (−0.48, 
−0.02); Fig. 6b, orange markers). The corresponding correlations for 
symbolic payoffs were in the same direction but not statistically signifi-
cant. Thus, we found evidence, albeit less robust across visual display 
types, that the noisier the neural magnitude representations (neural 
precision) and the stronger the deterioration of neural representation 
for larger magnitudes (neural diminishing sensitivity), the more risk 
averse the individual. This central result was also significant when using 
non-parametric and robust correlations (see Supplementary Table 3 for 
more details).

Effects of neural magnitude precision on individual risk 
aversion are mediated by noise in mental magnitude 
representations
Whereas the purely behavioural estimates of magnitude precision were 
strongly related across all task and display types, the neural and behav-
ioural magnitude representation measures were more strongly related 
within the perceptual task than across both choice types. This suggests 
that non-specific noise during the perceptual fMRI measurements (for 
example, measurement, physiological) may have overshadowed the 
relationship between neural magnitude precision and risk aversion 
measured outside the scanner. To account for all our measures using 
a single integrative framework, we thus performed mediation analyses 
to test whether risk aversion related specifically to that part of the 
variance in neural precision that was correlated with behavioural pre-
cision. Indeed, the behavioural precision index γperceptual significantly 
mediated (α × β) the effect between neural precision and risk aversion 
(measured as risk-neutral probability π ) for both non-symbolic 
(PMCMC = 0.014) and symbolic (PMCMC = 0.028) visual displays (Fig. 
7a,b). In line with this result, γperceptual also significantly mediated the 
effect between neural precision and risky payoff precision γrisk for both 
s y m b o l i c  (γnon−symbolic; PMCMC = 0.002)  a n d  n o n - s y m b o l i c 
(γsymbolic; PMCMC = 0.003) displays (Extended Data Fig. 8a,b).

For neural diminishing sensitivity, we found no such mediating 
effects of γperceptual , but a significant direct effect (c′) on π  for 
non-symbolic payoffs (PMCMC = 0.017) (Fig. 7c,d and Extended Data 
Fig. 8c,d) and no evidence of an effect for symbolic payoffs. These find-
ings are in line with the significant positive relationship between neural 
diminishing sensitivity and risk aversion for non-symbolic payoffs 
(above), which suggests that diminishing sensitivity may capture a 
latent feature of neural processing that is not fully accounted for by the 
NLC model. Irrespective of these details, our data provide evidence 
that neural precision is an aspect of the same latent trait that determines 
the precision of mental magnitude representations, and that this trait 
is related to risk aversion after controlling for unspecific noise.

Discussion
Individual differences in risk aversion have traditionally been thought to 
emerge from valuation processes, either as a consequence of individual 
differences in the concavity of the utility curve1 or as individual ‘appe-
tites’ for outcome variability32. Here we provide direct behavioural and 
neural evidence for a perceptual account of risk aversion6,19 proposing 
that, at least in certain contexts, risk aversion may also arise from system-
atic biases in the perception of potential payoffs. A crucial prediction of 
this account is that the degree of risk aversion should be related to the 
fidelity with which participants perceive numerical magnitudes. In line 
with this prediction, our results show that both the behavioural acuity of 
numerosity judgements as well as the fidelity with which the correspond-
ing magnitudes could be read out from neural fMRI activity are mecha-
nistically related to risk aversion in independent risky choices. Notably, 
the risky choices were taken under very different circumstances, even 
though the relationship between the neural precision and risk aversion 
was more pronounced when the presentation format of the payoffs was 
identical across both tasks (that is, non-symbolic). In addition, we were 
also able to reproduce previous findings of a topographic numerosity 
map in parietal cortex15,23 and its link to numerical perceptual acuity18, 
and we replicated the relationship between magnitude precision and 
individual risk attitudes within risky choice6. These new and confirma-
tory findings jointly indicate that risk-averse decision-makers may not 
actually ‘shy away from risks’—instead, they may attempt to rationally 
maximize expected reward, but may be limited in their ability to do so 
because of cognitive limitations that make them underestimate the 
larger payoff magnitudes that come with increased risk, just as they also 
underestimate larger magnitudes in purely perceptual tasks.

Previous work has already sought to understand the link 
between numeracy and rationality in economic choice33 and financial 
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decision-making6,19, but purely on the basis of behavioural data, with-
out any study of the underlying neurocomputational processes. By 
applying a unifying, comprehensive computational model rooted in 
normative theories from perceptual computational neuroscience34, 
we show here how risk aversion may emerge—at least partially—from 
the precision of neural and mental magnitude representations. These 
mechanistic links are domain-general not only across differences in 
visual displays with different sensory noise but also across tasks with 
different behavioural goals (perceptual accuracy versus maximizing 
financial value). Our results thus provide evidence that a similar neu-
rocognitive mechanism guides both numerical magnitude perception 

and risky choice, suggesting that at least part of the individual differ-
ences in risk-averse behaviour can be explained by variability in the 
acuity of numerical magnitude perception. Therefore, our findings 
provide direct empirical evidence for a postulated mechanistic link6 
between the interrelated precisions of perceptual and neural magni-
tude representations18 and apparent risk aversion.

Our results contribute to an ongoing research programme that 
seeks to understand the extent to which principles of lower-level per-
ceptual neural processing can account for idiosyncrasies in economic 
and risky decision-making6. Previous neuroimaging work along these 
lines has so far mainly focussed on characterizing how neural valuation 
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processes may be constrained by such principles35, and investigations 
of perceptual magnitude coding in parietal cortex had largely been con-
fined to perceptual tasks14,23. However, work in psychophysics36 and on 
efficient34 and noisy13 sensory coding has proposed that seemingly fun-
damental properties of perceptual processing (for example, Weber’s 
law or regressive bias) may in fact generalize across many task contexts. 
Recent work has also shown that neurons in inferior parietal sulcus are 
tuned to represent magnitudes beyond pure numerosities, but more 
generally across multiple domains such as time intervals37 and object 
sizes16. This makes it plausible that such psychophysically defined 
perceptual limitations may also affect behaviour in higher-order cogni-
tive domains, as we show here for risk-taking in the financial domain.

That being said, our results do not imply that individual variability 
in risky choice solely reflects properties of parietal-encoded mental 
magnitude representations. Previous studies have identified other 
sources of neural variability that may relate to individual differences in 
risky decision-making, such as fluctuations in striatal regions38 and in 
anterior insula39, or even neural lateralization40. More generally, recent 
findings have also suggested that economic choice variability may be 
associated with weaker value signals in orbitofrontal cortex41. Thus, 
our results highlight the precision of parietal magnitude representa-
tions as just one of several fundamental sources of decision-relevant 
noise that may lead to individual choice variability and risk attitudes.

In line with the hypothesis of value construction, the brain may flex-
ibly and actively construct subjective value representations from several 
context-dependent attributes, with noise in magnitude representations 
being one of the brain features affecting economic choice variability 
and bias, alongside more affective reward-38 and value-based42 neural 
variability. Generally speaking, the specific mechanisms by which the 
brain flexibly constructs values may induce the same individual to 
change their risk attitudes across different contexts. For example, 
risk-seeking is prevalent in non-human primate studies43 in which 
macaques receive feedback of the choice outcome and are rewarded 
every trial. However, recent work44 has shown that changing the context 
of the environment into a more naturalistic, free-range setting can lead 
non-human primates to behave in a risk-averse manner. Conversely, 
risk-seeking behaviour is found in humans45 in experimental models 
that administer rewards cumulatively. These task design differences 
could well reflect the brain’s flexibility to adapt to changing environ-
ments, which may affect the priors, precision and bias in representing 
monetary offers. Frydman and Jin19 have shown directly that exposure 
to different prior distributions of potential payoffs induces changes in 
risk attitudes. Specifically, more frequent exposure to large numbers 
induced greater risk-seeking behaviour. Overall, the degree to which 
individual or contextual choice variability and bias reflects mixtures 
of perceptual-, reward-, value-based or even emotional processes46 
is thus an exciting question that should be considered in future work.

Our data show that individual differences in behavioural acuity in 
the perceptual task were more closely correlated with the precision of 
the neural signal in the right as opposed to left NPC. Similarly, neural 
diminishing sensitivity for larger numbers—mirroring well-known 
empirical choice patterns—was more pronounced in right NPC. This 
apparent right lateralization of the parietal approximate number sense 
is in line with earlier neuroimaging studies of perceptual numerical 
magnitude judgement in children26 and adults18. These studies found 
relationships between behavioural numerical and neural acuity in right 
IPS but not left IPS—even though the objective numerosity of presented 
stimuli related to neural activity in both hemispheres. All these find-
ings also align with work in developmental psychology suggesting that 
number sensitivity in right IPS may potentially represent a more basic 
number sense that matures very early in life and closely relates to object 
size processing16. By contrast, left IPS function matures throughout 
childhood and appears more involved in symbolic number process-
ing26. Patients with right, but not left, parietal brain damage show 
impairments in quick numerosity judgements47, and a meta-analysis 

suggests that the right parietal lobe may be specifically involved in 
multiplication48, the key computational process underlying rational 
solutions to risky choice.

Our findings that perceptual and neural magnitude noise can 
mechanistically affect economic choice bias and variability suggest 
that normative and predictive models such as the NLC can capture basic 
magnitude representations commonly underlying both risky choice as 
well as perceptual judgements. However, the current form of the NLC 
is actually agnostic to whether choices are information-maximizing 
(that is, perceptual choice) or expected payoff-maximizing (that is, 
economic choice). Previous results have suggested that models can be 
set up to explicitly dissociate these two behavioural goals49. However, 
while the NLC may not be as computationally detailed as these more 
recent optimal coding models, our approach establishes it as one of 
the few choice models for whom there is an empirical correspond-
ence between model parameters and independent measures of neural 
processing. This paves the way for other uses of this general approach 
to validate complex model assumptions, and to predict choice behav-
iours on the basis of independent measures of basic neural processes.

Our approach of demonstrating that risk-averse behaviour is 
partially rooted in capacity constraints of perceptual brain processes 
dovetails with other (neuro)economic choice models that have taken 
inspiration in neurocomputational accounts of vision, sensory pro-
cessing, perception, attention or memory, among others50,51. Crucially, 
our specific neurocognitive account of risk aversion illustrates how 
principled understanding and empirical measurement of basic brain 
mechanisms may lend credence to choice models that have originally 
been developed mainly on the basis of theory and/or fits to empirical 
choice data. Thus, perhaps in analogy to how economic modelling of 
choice data may benefit from being constrained by choice axioms52, our 
study suggests that the vast space of possible choice models can be nar-
rowed down by empirical measures of the basic information-processing 
operations assumed by the model. Our approach therefore directly 
runs counter to previous concerns that the study of brain processes and 
neural data may provide little information of relevance to knowledge 
and theories about economic choice53. In fact, more recent economic 
models have already begun to propose cognitive micro-foundations 
that offer interesting computational hypotheses about choice vari-
ability, bias and context-dependent behaviour6,19. However, we highlight 
again that cognitive or economic models that are theoretically based 
on a neurobiological account should substantiate their assumptions 
with neural data. This will be essential for disambiguating between the 
ballooning number of choice models that draw on such theoretical 
frameworks54, and for establishing which of the assumptions underlying 
these flexible models are in fact plausible in the light of empirical data. 
For example, empirical evidence from neuroscience suggests various 
choice constraints that may arise from correlated variability of neuronal 
populations55 or from the algorithms the brain uses to flexibly adapt to 
different choice set sizes56 or cognitive task space57. All such perspectives 
can provide mechanistic insights that decision theorists and micro-
economists may use to advance model-building and therefore develop 
more neurobiologically grounded accounts of choice behaviour.

Finally, our current results offer correlational evidence of a 
relationship between mental magnitude representations encoded 
in parietal cortex and risk-averse behaviour as predicted by the NLC 
model. We recognize that while we found significant correlations 
between behavioural measures of perceptual precision and risk aver-
sion, the correlations between our neural precision measures and 
risk were less robust in certain contexts, such as when payoffs were 
presented as symbolic numbers. While symbolic and non-symbolic 
numbers overlap in the way they are encoded in parietal cortex17, 
format-dependence in sensitively decoding magnitude stimuli 
may possibly account for the differences in explained variance 
between non-symbolic and symbolic magnitude representations. 
Our fMRI task model used only non-symbolic numbers to decode 
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neural magnitude precision because of the mixed results of previous 
attempts to decode symbolic numbers using multi-voxel decoding 
fMRI techniques58. Future studies could fine-tune better decoding 
algorithms, develop other numerosity models, or possibly explore 
other sources of neural data that could reliably decode symbolic 
numbers from parietal cortex.

Looking ahead, future tests of the NLC model may investigate with 
brain stimulation methods whether parietal cortex is indeed causally 
involved in risky decision-making, and to what degree a perceptual 
account of risky-choice behaviour can be generalized to atypical popu-
lations, such as patients diagnosed with dyscalculia59, impulse-control 
disorders60 and chronic stress61. It would also be interesting to map the 
correspondence between numerical ability and risky-choice behaviour 
across various stages of human development with dynamic changes 
of risk attitudes62, or even across various real-world contexts with 
strong differences in risk attitudes, such as in countries with different 
stages of economic development63. Last but not least, our findings may 
also have policy implications, if it were possible to reliably measure 
numerical representations in environmental contexts that go beyond 
controlled laboratory settings. For example, studies on educational 
outcomes have shown that increasing numeracy has clear long-term 
consequences in improving financial literacy and lifelong incomes, 
which may depend on the individual’s ability to accurately gauge and 
evaluate risk64.

Methods
Participants
Sixty-four right-handed participants (26 females, ages 18 to 35) partici-
pated in the study. We informed them about the study’s objectives, the 
equipment used in the experiment, the data recorded and obtained 
from them, the tasks involved and their expected payoffs. We also 
screened participants for MR compatibility before their participation in 
the study. No participant had indications of psychiatric or neurological 
disorders or needed visual correction. Our experiments conformed to 
the Declaration of Helsinki and our protocol had the approval from the 
Canton of Zurich’s Ethics Committee.

Procedure
Participants completed the MRI screening and consent forms on their 
arrival. They then went into a behavioural testing room and read the 
instructions for the perceptual magnitude and risky-choice tasks, 
as well as information on MRI safety. Participants performed two 
tasks sequentially: a perceptual magnitude task and an economic 
risky-choice task. Participants completed the perceptual magnitude 
task inside the MRI scanner, where we recorded their behavioural 
and neural measures of mental magnitude precision. Participants 
subsequently completed the risky choice task outside the MRI scan-
ner, inside a behavioural testing room. The order of the tasks was 
chosen to prevent the statistics of the risky choice task from altering 
participants’ priors and thereby influencing the neural measures of 
magnitude representation. We also recorded and collected peripheral 
pupil and physiological measures, specifically eye movements during 
the perceptual magnitude task. Eye movements were collected using 
an MR-compatible infrared Eyelink II CL v.4.51 eye-tracker system (SR 
Research Ltd). After completing both tasks, we paid participants on 
the basis of both their cumulative score in the perceptual magnitude 
task and one decision trial randomly selected by our algorithm in the 
risky choice task (below). We additionally paid a show-up fee of 10 CHF 
(Swiss francs) for attendance and participation. Participants familiar-
ized themselves with the tasks and performed practice trials of both 
before they were brought to the MRI scanner room.

Perceptual magnitude task
Participants had to choose which of two sequentially presented clouds 
of coins contained a larger quantity of coins. Before the start of every 

trial, a red fixation cross was presented for 1 s. Then the first cloud C  
was overlaid on the red fixation for 600 ms. After an interval lasting 
between 6 and 9 s the second set of coin clouds X  appeared on the 
screen. Only the red fixation remained on the screen during this inter-
val. We chose the presentation timing and interval length in a way that 
would provide sufficient time to model the haemodynamic response 
function from neural data, preventing the hemodynamic response of 
the first stimulus presentation from being contaminated by 
response-related activity during the second stimulus presentation. 
The second set appeared for another 600 ms, whereafter the fixation 
cross changed from red to green, prompting participants to decide 
within 2.5 s which cloud had the larger quantity of coins. A 
green-coloured letter ‘l’ (or ‘r’) appeared on the screen to indicate 
participants had pressed left (or right) and thus chose the first (or 
second) set. Responses made too early (fixation had not turned  
green) or too late (after 2.5 s and when fixation had reverted back to 
red) were labelled as missed responses. Each correct response cor-
responded to a reward of 0.25 CHF, but participants had no feedback 
on the accuracy of their responses or the accumulation of points 
throughout the task. The perceptual magnitude task had a total of 216 
trials distributed across six runs and lasted a total of 30 to 40 min. The 
first set varied from 5 to 28, with numbers drawn from a geometric 
sequence with steps of √2  (5, 7, 10, 14, 20, 28). The second set was 
constructed by multiplying each magnitude from the first set by a 
factor of 2h/4, with h ranging in discrete steps from −6 to 6. Participants 
were not informed ahead of time what range of magnitudes would be 
presented to them during the experiment, but the possible payoffs 
were typical for the types of payoff given for experiments at our 
laboratory.

Risky-choice task
Participants had to choose between a certain offer C  and a risky offer 
X  with a fixed probability p = 0.55. Thus, a participant choosing the safe 
option had a 100% chance of being paid C, but a participant choosing 
the risky gamble had a 55% chance of being paid X and a 45% chance of 
no payment. No feedback of the actual payout outcome occurred 
throughout the task, but only after the experiment (below). During the 
task, the monetary payouts were presented in two display formats: 
symbolic payoffs of Arabic numerals or a cloud of 1-CHF coins. The 
gambles were presented simultaneously at the left and right sides of 
the monitor screen. In the beginning of every trial, the stated  
certain and risky probabilities appeared on the screen alongside the 
red fixation cross, with the position (left or right from the fixation  
cross) of these probabilities varying randomly from trial to trial. We 
used grey-shaded pies to represent the probabilities in both  
formats. We overlaid numerical monetary offers inside the probability 
pies when we displayed them as risky symbolic payoffs while we posi-
tioned the amounts below the pies when displayed as a cloud of 1-CHF 
coins. Both display formats were presented in alternating blocks of 40 
trials per block, totalling 12 blocks. The monetary amounts were dis-
played once the fixation cross changed from red to green, and partici-
pants had 3 s to choose the gamble on the left or on the right. A 
green-coloured letter ‘l’ appeared on the screen when participants 
pressed left and a green-coloured letter ‘r’ appeared on the screen when 
participants pressed right. Responses made too early or too late  
were missed responses, and these missed trials were not included in 
the draw of the final trial that determined the monetary payout of  
the participant.

After participants finished all trials, one trial was randomly  
drawn for the payout. If on that trial a participant had chosen the  
certain option, she immediately received that amount. If she had cho-
sen the risky option, she had to roll a virtual 100-sided die. Any result 
smaller than or equal to 55 was paid out, any other result led to no 
payout. The task had a total of 480 trials lasting between 30 and 40 min 
(240 trials per display presentation format). In analogy to the 
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perceptual task, we determined the monetary payoffs for the sure 
gamble to vary from 5 to 28, drawn from a geometric sequence with 
steps of √2 ; the probabilistic lotteries varied by a factor of 2h/4 in steps 
of 0 to 8. Participants were not informed about the range of monetary 
payouts offered to during the experiment, but the possible payoffs 
were typical for the types of payoff given for experiments at our 
laboratory.

The NLC model
The NLC model assumes that the coding of numerical magnitudes 
occurs in logarithmic space and the amount of noise of this representa-
tion is constant in log space (that is, scale invariant). Thus, the NLC 
model prescribes that psychometric curves for each stimulus magni-
tude should have similar slopes when plotted on a logarithmic scale, 
and that a single psychometric curve can fit all the choice data when 
plotting the log-ratio of these magnitudes. To this end, we separately 
fitted six psychometric curves for the perceptual magnitude task, 
where each curve plots the probability of judging the magnitude X  of 
the second cloud of coins to be greater than the magnitude C  of the 
first cloud, as a function of X  and with the reference of each curve being 
C = {5, 7, 10, 14, 20, 28}. The six psychometric curves for risky choice, on 
the other hand, represented the probability of choosing the risky 
gamble with payoff X  over the sure gamble with payoff C, as a function 
of X  and with the reference of each curve being C = {5, 7, 10, 14, 20, 28}. 
To fit the choice data in the perceptual magnitude and risk task, we 
used the same two-parameter probit model with slope γC and intercept 
δC  in both linear space,

Pr(choose risky|X) = Φ (γCX − δC) ,

and in log space,

Pr(choose risky|X,C) = Φ (γClogX − δC) ,

where Φ (•) is the cumulative distribution function of the standard 
normal distribution. We separately estimated the parameters, (δC, γC) 
at the population and individual levels using a hierarchical Bayesian 
framework in RJAGS (Extended Data Fig. 9a).

In a second step, we fitted the NLC with a similar probit model, but 
now with a single psychometric curve fitted to the choice data of both 
tasks instead of six separate curves as previously. This version of the 
model assumes a log-ratio encoding of numerical magnitudes, and we 
estimated one slope γ and intercept δ

Pr(choose risky|X,C) = Φ (γlog (X
C
) − δ) .

We again measured (δ, γ) at the population and individual levels. 
The NLC prescribes that γ measures the precision of our mental mag-
nitude representations while δ  contains information about the indif-
ference point. We thus constrained the standard probit and rationalized 
it as the NLC by mapping the probit parameters with NLC model 
specifications

γ ≡ 1
√2ν

, δ ≡ (
β−1log (p−1)

√2ν
) ,

where ν is the noise in mental magnitude representations; p is the stated 
probability (0 < p < 1 during risk and p = 1 during perceptual magni-
tudes) and β = σ2

σ2+ν2
 is the multiplier that determines the weight of the 

noisy estimate r  relative to the prior (see ref. 6 for the full 
derivation).

We can then calculate an individual’s indifference point and index 
of risk aversion using the probit parameters. First, the indifference 
point is the level at which the individual is indifferent between choosing 

either X  or C , and this indifference is determined by the following 
threshold rule,

X
C
= ( 1

p
)

1
β

.

We can derive and estimate the indifference point θ  using the 
intercept and slope parameters of the probit formulation of the NLC 
model during risky choice (δrisk, γrisk),

θ ≡ exp (δrisk
γrisk

) .

Second, we can also calculate a standard economic index of risk 
aversion, namely the risk-neutral probability: the degree to which the 
probability-of-payoff in the risky-choice options seems to be underes-
timated. For example, if a participant is so risk averse that her indiffer-
ence point lies at X

C
= 3  (note that an optimal, risk-neutral 

decision-maker would have the indifference point at 
X

C
= pcertain

prisky
= 1

0.55
≈ 1.82 ), she chooses equivalent to an optimal risk- 

neutral decision-maker in the same model if this was set up to contain 
a p = 1

3
. According to NLC, a decision-maker will only behave with a 

risk-neutral probability equal to the objective probability p = 0.55 in 
the absence of noise (ν = 0); otherwise, the individual’s risk-neutral 
probability in the presence of noise (ν > 0) is

0.55(
1
β
) ≤ 0.55,

and, thus, by definition, participants are risk averse. We can similarly 
derive and measure an individual’s risk-neutral probability using the 
intercept and slope parameters of the probit formulation of the NLC 
model (δrisk, γrisk),

π ≡ exp (−δrisk
γrisk

) .

Finally, the NLC predicts a positive non-linear relationship between 
the precision in mental magnitude representations γrisk and our index 
of risk aversion π. We fitted a psychometric model that assumes a com-
mon prior σ  (see Khaw et al.6 for more details),

π = 0.55
(1+ 1

2σ2γ2risk
)
.

We estimated σ  by regressing participant precision measures of 
payoff offers γrisk to their corresponding risk-neutral probability π  . We 
also fitted the relationship between γrisk and π  using simple linear regres-
sion. Given that our central aim was to determine whether individual 
risk-averse behaviour can be predicted by an independent measure of 
magnitude precision, we regressed our index of risk aversion π on γperceptual.

Preference-based models
We also fitted stochastic versions of standard economic models to our 
data to test whether the NLC explains these better than models that 
explain risk aversion by expected utility maximization. We considered 
three classes of canonical preference-based models for model com-
parison, namely (1) constant relative risk aversion, a standard model 
of expected utility theory65; (2) cumulative prospect theory66 and (3) 
salience theory67. We used probit and logit choice models to account 
for stochasticity during risky choice. Please see the Supplementary 
Methods for the exact model specifications used.

Hierarchical Bayesian parameter estimation
We estimated model parameters using hierarchical Bayesian estima-
tion and Markov chain Monte Carlo (MCMC) techniques68 using the 
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Gibbs sampler as implemented in JAGS69. We used weakly informative 
hyperpriors for the group-level distributions.

For every group-level parameter, we also estimated the parameters 
for each individual participant. These individual-level estimates were 
drawn from a Gaussian distribution using the mean and standard devia-
tion of the hyperpriors. The exact model specification and used priors 
can be found in Extended Data Fig. 9. We drew a total of 50,000 burn-in 
samples to let the MCMC sampler reach a stationary distribution. Then, 
for each model, we drew a total of 50,000 new samples with three 
chains each. We sampled each chain using different random number 
generator engines and different seeds. We thinned the final sample by 
a factor of 50, thus resulting in a final set of 1,000 samples for each 
parameter. We used Gelman–Rubin tests to confirm chain convergence 
of each parameter. All estimated parameters in our Bayesian models 
showed a ̂R < 1.05, indicating that all three MCMC chains converged 
properly. Wherever we wanted to test whether a parameter is larger or 
smaller than 0, we reported Bayesian P values that directly quantify 
the probability of the reported effect being smaller or larger than zero. 
We computed these values using posterior population distributions 
estimated for each parameter. During model comparison, we used the 
DIC to perform model comparisons70.

MRI acquisition and preprocessing
We acquired functional MRI data at the UZH Zurich Center for Neuro-
economics, using a Philips Achieva 3 T whole-body MR scanner 
equipped with a 32-channel MR head coil. Specifically, we collected six 
runs with a T2*-weighted gradient-recalled echo-planar imaging 
sequence (189 volumes + 5 dummies; flip angle 90°; repetition time, 
TR = 2,827 ms; echo time, TE = 30 ms; matrix size 96 × 96, field of view 
240 × 240 mm; in-plane resolution of 2.5 mm; 44 slices with thickness 
of 2.5 mm and a slice gap of 0.5 mm; SENSE acceleration in 
phase-encoding direction with factor of 1.5; time of acquisition 
9:14 min). Additionally, we acquired high-resolution T1-weighted 3D 
MPRAGE image (field of view 256 × 256 × 170  mm; resolution 1 mm 
isotropic; inversion time, TI = 2,800 ms; 256 shots, flip angle 8°; 
TR = 8.3 ms; TE = 3.9 ms; SENSE acceleration in the left to right direction 
2; time of acquisition 5.35 min) for image registration during post-
processing. Preprocessing was performed fMRIPrep v.1.4.0 (ref. 71) 
using standard settings. For more information on preprocessing and 
single-trial activation modelling see the Supplementary 
Information.

Numerosity encoding model
We used a nPRF f(s) (ref. 72) to model BOLD responses to the first stimu-
lus array. We modelled the data separately for every vertex and for 
every individual, yielding 36 (six trial-wise regressors per stimulus type 
per run) activation values for each of the six possible magnitudes of 
the first stimulus array. We used gradient descent optimization to find 
a Gaussian receptive field on the logarithmic number line that best 
predicted number-wise beta estimates in terms of R2. The model con-
tained four free parameters: (1) baseline activation b; (2) a peak activa-
tion A; (3) the numerical centre of the logarithmic Gaussian μ and (4) 
the standard deviation of the logarithmic Gaussian σ. All these param-
eters were jointly estimated using maximum likelihood estimation.

We averaged the vertex-wise parameter estimates over partici-
pants by weighting their R2 and rendered them on the fsaverage6 corti-
cal surface reconstruction using Pycortex. The parameter estimates 
were thresholded on the mean R2 across participants at R2 > 0.09. This 
allowed us to qualitatively replicate the topological number fields in 
the parietal and frontal cortex reported by refs. 15,23 at 3 Tesla, in the 
group space of a large number of participants (n = 64). We manually 
selected all vertices in and around the IPS17,18 on the basis of the criteria 
that the region was both magnitude-sensitive and showed topographic 
organization. For all participants, we used this same cortical mask, 
defined as fsaverage6-space.

Numerosity decoding model
We implemented a Bayesian inversion of the nPRF encoding model, 
f (s), extending on previous work of encoding–decoding models24. 

This allowed us to probe the uncertainty of numerical magnitude 
representations, operationalized as dispersions of the posterior 
distributions P (s|Y), representing the probability of different numeri-
cal magnitudes s, given the BOLD data Y of a particular trial. See the 
Supplementary Information for more details on the exact 
implementation.

Individual behavioural and neural variability tests
The hierarchical Bayesian estimation procedure for both behav-
ioural performance during perceptual magnitudes and risky choice 
produced posterior distributions of NLC model parameters at both 
population and individual levels. Thus, we extracted the mean of 
each participant’s posterior distribution. On the other hand, our 
neural encoding and decoding approach was able to extract, on 
a participant-to-participant basis, a measure of neural precision, 
which is the inverse of the mean standard deviation (s.d.) of the 
decoded trial magnitude. We also regressed these standard devia-
tions on the stimulus magnitudes that were presented, to produce 
a measure of neural diminishing sensitivity that indexes to which 
extent the acuity of neural representations decreased for larger 
magnitudes. This measure may be less prone to general noise in 
the MR data that equally affects all magnitudes. The neural preci-
sion had a non-Gaussian distribution because some participants 
had a precision very close to 0. Therefore, we log-transformed this 
measure before we ran any correlations. To test for individual differ-
ences, we performed simple Pearson correlations and robust regres-
sions. We performed statistical inference on the corresponding 
parameters using one-sided P values, to test the a priori proposed 
positive relationship between individual behavioural and neural 
measures as predicted by the model. Any negative correlation would 
be in the opposite direction to that predicted by the NLC model and 
our hypothesis and would thus be considered no different from  
a null effect.

Bayesian mediation analysis
We used hierarchical Bayesian mediation analysis (Extended Data  
Fig. 9b) to test whether the individual behavioural magnitude precision 
γperceptual (estimated using the NLC model) mediates the association 
between our individual neural measurements γneuro (neural precision 
and neural diminishing sensitivity, obtained from our generative 
encoding and/or decoding model in the perceptual magnitude task) 
and the individual measurements of risk aversion πrisk and risk precision 
γrisk. Similar to previous analyses, we used three chains and the same 
initial burn-in and thinning steps to obtain a final set of 1,000 samples 
for each parameter at the population and individual levels. We used 
Gelman–Rubin tests to check whether all our latent variables had 
̂R < 1.05, which indicated that all three MCMC chains had converged. 

Finally, we performed inference using Bayesian P values, inferred from 
the highest density interval.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The behavioural data used in Figs. 2–7 and Extended Data Figs. 2–4, 6, 
8 and 9 are available at https://doi.org/10.5281/zenodo.7966313. The 
neuroimaging data are available at Open Neuro: https://openneuro.
org/datasets/ds004259.

Code availability
The codes are available at https://doi.org/10.5281/zenodo.7966313.
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Extended Data Fig. 1 | Model comparison between the NLC model and 
competing economic choice models. DIC difference between the best model 
(the NLC model in all cases) and the competing economic choice models: 
constant relative risk aversion (CRRA), cumulative prospect theory (CPT), and 

salience theory (ST) in both (a) non-symbolic and (b) symbolic visual display 
formats. We fitted each of these economic choice models using the Logit (1) and 
Probit (2) model specifications.
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Extended Data Fig. 2 | Individual behavioural differences. Observed choice 
probabilities of each individual participant were plotted against the log-ratio of 
monetary offers or magnitudes for (a) non-symbolic risky choice (orange), (b) 

symbolic risky choice (blue), and (c) perceptual magnitudes (purple). The NLC 
model was used to fit the psychometric curves of each individual (black solid 
line). The numbers above each plot denotes participant ID.
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Extended Data Fig. 3 | Individual differences in choices for extreme offer 
magnitudes. Histograms of choice probabilities (across subjects) for coin 
clouds (left, purple) or risky offers in nonsymbolic (middle, orange) and symbolic 
(right, blue) presentation formats, for trials with (a) the highest and (b) lowest 

magnitudes/offers. The distributions are drawn from the extreme value points 
of the individual choice data in Extended Data Fig. 2. The more the distributions 
are skewed towards 1 (for a) and 0 (for b), the less evidence for lapses across 
individual subjects.
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Extended Data Fig. 4 | The NLC model accounts for perceptual bias and risk 
aversion arising from noisy magnitude representations. (a) Choice 
probabilities plotted in linear (left) and logarithmic (right) space as the ratio of 
the second- and first-coin cloud magnitudes (perceptual task, red) or risky and 
sure payoffs (risky-choice task, blue). The NLC model predicts that the 
indifference point in the perceptual task is θperceptual ≈ 1 regardless of noisy 
magnitude representations while θrisky in risky choice depends on magnitude 
noise. The indifference point—the ratio of magnitudes where the individual is 

indifferent between X  or C, expressed as θ = ( 1
p
)
1
β—is represented as the 

intersection of the black horizontal dashed line and the points of the 
psychometric curve. In perceptual magnitude, there is no outcome uncertainty 
(p = 1) in both dot clouds; hence, θperceptual ≈ 1 regardless of whether magnitude 
representations are noisy (β < 0 and ν > 0, solid pink psychometric curve) or 
not (β = 1 and ν = 0, dashed pink stepwise function). This implies that the 
intercept is δperceptual ≈ 0. In risky choice, outcome probability is fixed at 
p = 0.55 for the risky payoff. In the absence of noise (β = 1 and ν = 0), the 
indifference point reflects the relative value of payoffs, θrisky =

X

C
= 1

0.55
 

(intersection of the black dashed horizontal line and blue dashed stepwise 
function). With magnitude noise (β < 1 and ν > 0), θrisky is larger than risk-neutral 

indifference of 1
0.55

, θrisky = ( 1
0.55

)
1
β > 1

0.55
 (intersection of the black dashed 

horizontal line and blue solid psychometric curve). This is reflected as a shift of the 
psychometric curve to the right relative to the risk-neutral stepwise function. 
Risk aversion is quantified as the magnitude of the rightward shift of the 
psychometric function compared to the risk-neutral indifference point, 
θrisky =

1
0.55

. Risk-neutral probability, πrisky, is the reciprocal of the indifference 

point, πrisky = 0.55
1
β. (b) Decreasing the width of the prior, σ, shifts the 

psychometric curve to the right, and thus increases risk aversion. The 

indifference point can also be expressed as θ = ( 1
p
)
1
β = ( 1

p
)
σ2+ν2
σ2  to explicitly 

show the link between σ  and θ, and why decreasing the prior increases the 
indifference point and shifts the psychometric curve rightward. The 
psychometric curves are plotted in linear (left) and logarithmic (right) space and 
the different colours represent different prior widths.
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Extended Data Fig. 5 | Behavioural effects of the presentation format of 
monetary magnitudes. (a) Population posterior distributions of the (a, b) 
intercept, ẟ, as well as (c, d) the indifference point, θ, for both (a,c) perceptual 
magnitude and (b, d) risky choice tasks. The intercept during perceptual 
magnitude is no different from zero (indicated here by the vertical dashed line) 
while it is significantly larger than zero during risky choice in both visual displays. 
Similarly, the indifference point in perceptual magnitude is no different from one 
while in risky choice, it is significantly larger than the threshold, 1

0.55
 (the vertical 

dashed line). Distributions in pink represent data from the perceptual magnitude 
task, in blue represent data from risky symbolic payoffs, and in yellow-orange for 
risky nonsymbolic payoffs. One-sided Bayesian ‘p-values’ were calculated: The 

light pink-shaded mass of the highest density interval (HDI) covers 95% of the 
posterior distribution while the dark-shaded tail-ends represent the most 
extreme 5% probability mass of the posterior distribution. Bayesian comparison 
between posteriors reveal that the posterior distribution is significantly different 
from zero (represented here as a vertical dashed line) if the light-shaded mass 
does not cross zero. (e) Individual measures of the indifference point for 
nonsymbolic and symbolic payoffs are positively correlated (n = 62). The shaded 
area around the regression line represents 95% confidence intervals. The black 
dashed line represents the identity line. p-values were estimated from one-sided 
Pearson correlations.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Behavioural and neural measures of representation 
acuity and risky choice variability. (a) The estimated precision of mental 
magnitude representations employed for the perceptual task, γperceptual, and the 
risky decision-making task, γsymbolic and γnonsymbolic, are related (n = 64), for both 
types of visual displays, as predicted by the NLC model. The diagonal dashed 
line represents the identity line. Shaded area are error bands corresponding to 
95% confidence interval for the regression line. p-values were estimated from 
one-sided Pearson correlations. (b) Group-level posterior distributions of non-
symbolic risk (γnonsymbolic, orange), symbolic risk (γsymbolic, blue), and perceptual 
magnitude (γperceptual, pink) precision. Top plots the posterior distributions 
while the bottom plots are distributions of differences between precision 
measurements (in pink). One-sided Bayesian ‘p-values’ were calculated:  

The light-shaded mass of the highest density interval (HDI) covers 95% of 
the posterior distribution while the dark-shaded tail-ends represent 5% of 
the posterior distribution. The vertical dashed line represents zero. (c) The 
correlations between the neural precision parameter and the risky choice 
precision parameter γ were not statistically significant (n = 64), but in the 
hypothesised direction: the higher the neural precision, the less variable the 
behaviour. (d) Neural diminishing sensitivity was significantly correlated with 
the risky choice precision parameter γ (n = 64) for the non-symbolic presentation 
format and marginally significant for the symbolic presentation format. The 
shaded area around the regression line represents 95% confidence intervals. 
p-values were estimated from one-sided Pearson correlations.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Individual risk measures relate systematically to 
choice accuracy in the perceptual task. (a) Raw measures of individual 
perceptual choice accuracy and the frequency of choosing the risky payoff  
(n = 64) are related across all visual displays. Perceptual accuracy is also related 
(n = 64) to the more precise model-defined measurements of (b) the estimated 
precision of potential payoffs and (c) the index of risk aversion across visual 

display types. (d) These correlations reflect that magnitude precision in the 
perceptual task relates strongly to choice accuracy (but is not affected by 
response biases and the response noise contained in pure choice accuracy 
measures). Circular dots represent subjects. The shaded area around the 
regression line represents 95% confidence intervals. p-values were estimated 
from one-sided Pearson correlations.
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Extended Data Fig. 8 | Perceptual choice precision mediates the association 
between neural precision and risky choice precision. (a) The effect of neural 
precision on risky choice precision for the task using non-symbolic numbers (n = 
64) is mediated by perceptual choice variability. There is no significant direct or 
total effect. (b) The effect of neural precision on risky choice precision for the task 
using symbolic presentation format is mediated by perceptual choice variability. 

There is no significant direct or total effect. The effect of neural diminishing 
sensitivity on risky choice precision for the task using (c) non-symbolic numbers 
is mediated by perceptual choice precision, but less so for (d) symbolic numbers. 
One-sided Bayesian ‘p-values’ were calculated using hierarchical Bayesian 
mediation analysis (see Methods and Extended Data Fig. 9b).
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Extended Data Fig. 9 | Hierarchical Bayesian models. Graphical 
representations of the hierarchical Bayesian (a) noisy logarithmic coding model 
and (b) mediation analysis. Clear circles represent latent variables while filled 

circles are observed variables, such as trialwise choice (rcsi) data, subject-wise 
behavioural and neural measurements (yj), and numerosity/payoff inputs (X,C). 
See Supplementary Note for more details.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection The perceptual magnitude and economic risky choice tasks were both presented and behavioral data were collected using custom-written 
code in MATLAB R2018a and the Cogent2000 toolbox. The MR-compatible infrared Eyelink II CL v4.51 eye-tracker system (SR Research Ltd.) 
was used to collect pupil dilation and eye-movement data inside the MRI scanner. The codes for the choice tasks are available at doi: 10.5281/
zenodo.7966313.

Data analysis R 3.1.1.1 was used for behavioural and individual-level fMRI modelling and analysis. We used R-JAGS packages for hierarchical Bayesian 
modeling and mediation analyses (Plummer, 2003). Pre-processing was performed using fMRIPrep 1.4.0, which was based on Nipype 1.2.0. 
Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and grey-matter (GM) was performed on the brain-extracted T1w 
using fast (FSL 5.0.9). Brain surfaces were reconstructed using recon-all (FreeSurfer 6.0.1). Registration was performed with antsRegistration 
(ANTs 2.2.0). Activation modelling was done via Freesurfer (Fischl et al., 1999). The numerical population receptive field model was rendered 
on the fsaverage6 cortical surface reconstruction using Pycortex (version 1.2.1). The numerosity decoding model was developed using a 
Python (version 3.7) package, which is available at (https://github.com/Gilles86/braincoder/tree/numerosityrisk). The noise model for 
decoding was implemented in Tensorflow (version 1.15.5), used gradient descent (Kingma and Ba, 2014).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The behavioural data are available at doi: 10.5281/zenodo.7966313. The neuroimaging data are available at Open Neuro: https://openneuro.org/datasets/
ds004259.

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender We collected participants' data on sex from their MRI screening and consent forms upon their arrival, before the experiment. 
Information was self-reported and is included in the manuscript. Participant sex was not considered in the design of the 
experiment and data analysis because we were interested continuous individual differences in perception and risk attitudes, 
as well as their relation. 

Population characteristics 64 right-handed participants (26 females, ages 18 to 35) volunteered to participate in this study. No participant had 
indications of psychiatric or neurological disorders or needed visual correction. 

Recruitment Participants were recruited via the University Registration Study for Study Participants (UAST). All participants were pre-
screened for MR compatibility prior to their participation in the study. There is no indication of any self-selection bias during 
recruitment.

Ethics oversight Our experiments conformed to the Declaration of Helsinki and our protocol had the approval from the Canton of Zurich’s 
Ethics Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size 64 right-handed participants (26 females, ages 18 to 35) volunteered to participate in this study. Most of the participants were undergraduate 
and graduate students from the University of Zurich or ETH Zurich. Participants were randomly selected to participate in the study, subject to 
their MR compatibility. Power analysis was used to calculate the effect size. The sample size was determined based on a power of 0.80 with 
an alpha of 0.05. Our sample is representative to typical healthy populations with no neurological disorders. 

Data exclusions No data exclusions.

Replication Behavioural results from the study, particularly that of the risky choice task, replicated previous results of a logarithmic encoding and scale 
invariance of payoff magnitudes from Khaw, et al. (2021, Review of Economic Studies). In particular, we replicated the behavioural results 
during an initial pilot study and we were able to further replicate the findings from Khaw et al. (2021) in the main study.

Randomization Participants performed all the tasks in a within-subject design. Thus, the participants were not allocated to experimental groups and thus 
randomization was not needed. 

Blinding No blinding required in this study since this was a within-subjects design. Participants were not grouped to any sort of control or treatment 
conditions.
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Magnetic resonance imaging

Experimental design

Design type This is an event-related fMRI task design.

Design specifications There were 6 runs and a total of 216 trials during the perceptual magnitude task (36 trials per run) and 480 trials (240 
trials each for display presentation format) during the risky choice task. The total experimental session inside the fMRI 
scanner lasted for  1 hr (30-40 minutes for the perceptual task, 6 minutes for anatomical scan and 10-20 minutes for 
participant setup) and 30-40 minutes outside the scanner during the risky choice task. 

Behavioral performance measures We recorded choices and response times (measured by button presses) as behavioural output measures and related 
them to variations in the magnitudes presented in the numerosity and risky choice tasks. We evaluated whether 
participants performed as would be predicted by a psychophysical model of magnitude and risky choice precision (see 
Khaw et al., 2021). The key measure were the slopes of each individual's choice curves across magnitudes in these tasks, 
which is an expression of the precision of magnitude representations as specified by the model.

Acquisition

Imaging type(s) Functional

Field strength 3T (Philips Achieva)

Sequence & imaging parameters For each run, we collected T2*-weighted gradient-recalled echo-planar imaging (GR-EPI) sequence (189 volumes + 5 
dummies; flip angle 90 degrees; TR = 2827 ms, TE = 30ms; matrix size 96 × 96, FOV 240 × 240mm; in-plane resolution of 
2.5 mm; 44 slices with thickness of 2.5 mm and a slice gap of 0.5mm; SENSE acceleration in phase-encoding direction 
with factor 1.5; time-of-acquisition 9:14 minutes). We also acquired high-resolution T1-weighted 3D MPRAGE image 
(FOV: 256×256×170 mm; resolution 1 mm isotropic; TI=2800 ms; 256 shots, flip angle 8 degrees; TR=8.3 ms; TE=3.9 ms; 
SENSE acceleration in left-right direction 2; time-of-acquisition 5:35 minutes) for image registration during post-
processing. 

Area of acquisition We used whole brain scans, but optimised the sequence for our region of interest in numerical parietal regions. 

Diffusion MRI Used Not used

Preprocessing

Preprocessing software We used the fmriprep 1.4.0 preprocessing workflow (https://fmriprep.org/).

Normalization All multivariate analyses were performed in individual space, as defined by the `T1w`-space of fmriprep. The parietal 
numerosity maps were made via a cortical surface-based registration to the `fsaverage` surface space of Freesurfer 6.0.1, as 
included with fmriprep.

Normalization template We used the fsaverage template of Freesurfer 6.0.1 for the visualization of the numerosity maps at the group level and to 
define the ROI. All decoding analyses were done in individual (`T1w`)-space.

Noise and artifact removal The following fmriprep confound regressors were included to correct for scanner (a_compcor), movement (trans_x/rot_x), 
drift (cosine) and physiological noise (a_compcor): ['a_comp_cor_00', 'a_comp_cor_01', 'a_comp_cor_02', 'a_comp_cor_03', 
'a_comp_cor_04', 'dvars', 'framewise_displacement', 'cosine00', 'cosine01', 'cosine02', 'cosine03', 'cosine04', 'cosine05', 
'cosine06', 'trans_x', 'trans_x_derivative1', 'trans_y', 'trans_y_derivative1', 'trans_z', 'trans_z_derivative1', 'rot_x', 
'rot_x_derivative1', 'rot_y', 'rot_y_derivative1', 'rot_z', 'rot_z_derivative1']

Volume censoring We did not apply any volume censoring.
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Statistical modeling & inference

Model type and settings We fitted a voxelwise numerical receptive field model as developed by Harvey et al. (2013; 2017) to the parameters 
estimated in a single-trial GLMs (Mumfored et al., 2014). The resulting R2s were averaged over subejcts and arbitrarily 
thresholded, just as in Harvey et al.-papers. However, these maps were not used for any statistical inference except 
visualization and defining a rough anatomy-constrained ROI at the group level by manual segmentation. The resulting 
estimated encoding models were inverted using the approach pioneered by van Bergen et al. (2015). Crucially, the parameter 
of the nPRF model were fitted again 6 times, corresponding to 6 hold-out runs. Hence, the estimated predictive accuracy of 
the decoding model was not biased by "double-dipping".

Effect(s) tested No condition-specific effects were tested. We were interested in individual differences across subjects in decoding fidelity 
rather than condition effects.

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s) We focused on the right numerical parietal cortex (NPC) areas previously reported by Harvey et al. (2013; 
2017).

Statistic type for inference
(See Eklund et al. 2016)

We did not perform voxelwise statistics and thus did not use the respective inference methods for massively univariate 
analyses (only multivariate decoding performance).

Correction No multiple-comparison correction was performed since no voxel/cluster-wise inferences were made.

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Multivariate modeling and predictive analysis Hierarchical Bayesian parameter estimation: we estimated model parameters using hierarchical Bayesian 
estimation and Markov Chain Monte Carlo (MCMC) techniques (Gelman et al., 2013; Kruschke, 2015). We 
used a Gibbs sampler implemented in JAGS (Plummer, 2003). We used weakly informative hyperpriors for 
the group-level distributions. We drew a total of 50,000 burn-in samples to let the MCMC sampler reach a 
stationary distribution. Then, for each model, we drew a total of 50,000 new samples with three chains each. 
We sampled each chain using different random number generator engines and different seeds. We thinned 
the final sample by a factor of 50, thus resulting in a final set of 1,000 samples for each parameter. We used 
Gelman-Rubin tests to confirm chain convergence of each parameter. All estimated parameters in our 
Bayesian models showed a R < 1.05, indicating that all three MCMC chains converged properly.  
 
Numerosity encoding model: we used a numerical population receptive field model (nPRF) (Dumoulin and 
Wandell, 2008), to model BOLD responses to the first stimulus array. We modelled the data separately for 
every vertex and for every individual, yielding thirty-six (six trial-wise regressors per stimulus type per run) 
activation values for each of the six possible magnitudes of the first stimulus array. We used gradient descent 
optimization to find a Gaussian receptive field on the logarithmic number line that best predicted number-
wise beta estimates in terms of R-squared. All these parameters used were jointly estimated using maximum 
likelihood estimation. 
 
Numerosity decoding model: we implemented a Bayesian inversion of the nPRF encoding model, extending 
upon previous work of encoding-decoding models (van Bergen and Jehee, 2018; van Bergen et al., 2015) . 
This allowed us to probe the uncertainty of numerical magnitude representations, operationalized as 
dispersions of the posterior distributions Pr(s│Y), representing the probability of different numerical 
magnitudes, given the BOLD data of a particular trial type for a particular trial/run. 
 
Model validation: To estimate the robustness of the decoding approach, we evaluated the posterior of 
unseen data at p(s={5,7,10,14,20,28}) to check the mostly likely possible stimulus (maximum a posteriori; 
MAP stimulus) according to the model. We could then compare the accuracy of the decoding model versus a 
null model that would perform at chance, p(correct)=1/6  or 16.7%. 
 
Bayesian mediation analysis: we used hierarchical Bayesian mediation analysis to test whether the 
association between our individual neural measurements (obtained from our generative encoding/decoding 
model in the perceptual magnitude task) and individual measurements of risk aversion is mediated by 
individual behavioural magnitude precision (estimated using the NLC model).
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