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a b s t r a c t

The subthalamic nucleus (STN) is a small, subcortical brain structure. It is a target for deep

brain stimulation, an invasive treatment that reduces motor symptoms of Parkinson's

disease. Side effects of DBS are commonly explained using the tripartite model of STN

organization, which proposes three functionally distinct subregions in the STN specialized

in cognitive, limbic, and motor processing. However, evidence for the tripartite model

exclusively comes from anatomical studies and functional studies using clinical patients.

Here, we provide the first experimental tests of the tripartite model in healthy volunteers

using ultra-high field 7 Tesla (T) functional magnetic resonance imaging (fMRI). Thirty-four

participants performed a random-dot motion decision-making task with a difficulty

manipulation and a choice payoff manipulation aimed to differentially affect cognitive and

limbic networks. Moreover, participants responded with their left and right index finger,

differentially affecting motor networks. We analysed BOLD signal in three subregions of

the STN along the dorsolateraleventromedial axis, identified using manually delineated

high resolution anatomical images and based on a previously published atlas. Using these

paradigms, all segments responded equally to the experimental manipulations, and the

tasks did not provide evidence for the tripartite model.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The subthalamic nucleus (STN) is a small, subcortical brain

structure and a node of the basal ganglia (BG). It is a target for

deep brain stimulation (DBS), which reduces the motor

symptoms of Parkinson's Disease (PD) by electrically stimu-

lating the STN (Fasano & Lozano, 2015; Limousin et al., 1995;

Lozano& Lipsman, 2013). However, DBS of the STN can lead to

severe side effects such as cognitive decline, depression, and

(hypo)mania (Christen, Bittlinger, Walter, Brugger, & Müller,

2012; Groiss, Wojtecki, Südmeyer, & Schnitzler, 2009; Temel

et al., 2006).

The so-called tripartite model of the STN was originally

based on tracing studies in non-human primates (e.g., Haynes

&Haber, 2013; Joel&Weiner, 1997; Parent&Hazrati, 1995) and

is used to explain these side effects, by proposing that the STN

is subdivided in three parts with different functional roles

(Temel, Blokland, Steinbusch, & Visser-Vandewalle, 2005).

These subdivisions are hypothesized to be connected to three

cortical networks, which can be characterized as a ‘limbic’

network, a ‘cognitive’ network, and a ‘motor’ network.

Consequently, the proposed subdivision of the STN also con-

sists of limbic, cognitive, andmotor parts, which can be found

in the ventromedial, central, and dorsolateral parts of the

STN. Assuming this tripartite division, misplacements of the

electrode in the limbic or cognitive parts of the STN, rather

than the targeted motor part, are thought to be the origin of

non-motor side effects of DBS of the STN (Karachi et al., 2009;

Temel, Blokland, et al., 2005).

Although empirical studies provide indirect evidence that

the tripartite model is plausible in the human brain

(Greenhouse, Gould, Houser, & Aron, 2013; Lambert et al.,

2012; Mallet et al., 2007), a systematic review of the neuroan-

atomical literature on the STN in the non-human primate

shows little consistency in the number of subdivisions and

their topological organization (Keuken et al., 2012). Moreover,

to the best of our knowledge, there is no study that shows

direct evidence in a healthy human population that different

subparts of the STN are involved in different functions.

Currently, the evidence for putative functional subdivisions in

the STN comes nearly exclusively from neuroanatomical data

in non-human primates (Haynes&Haber, 2013; Joel&Weiner,

1997; Parent&Hazrati, 1995), rather than from functional data

acquired during the execution of tasks that require limbic,

cognitive or motor processing. Having said that, Greenhouse

et al. (2011), showed that stimulating more dorsal versus

more ventral DBS contacts led to reduced response times in

PD patients, whereas more ventral stimulation increased re-

ports of positive emotion. More ventral stimulation also

improved task switching performance in PD patients, unlike

dorsal stimulation (Greenhouse et al., 2013). Patients with

obsessive-compulsive disorder (OCD) have received DBS

stimulation in the STN as well. Stimulation in these patients

seems to be more effective in more ventrally located elec-

trodes (Mallet et al., 2007; Mulders et al., 2016) and increased

activity in ventral ein contrast to more dorsally located elec-

trodese has been related to OCD severity, consistent with a

“limbic” STN region (Burbaud et al., 2013; Piallat et al., 2011;

Welter et al., 2011). Some anatomical tracing (Nambu, Takada,
Inase, & Tokuno, 1996) and electrophysiological recording/

stimulation work (Nambu et al., 2000) in non-human primates

actually shows very widespread projections from (pre)motor

cortex across the entire main axis of the STN, providing some

functional-anatomical data that speaks against a tripartite

model. Moreover, recent studies doing in-vivo tract tracing

using diffusion-weighted MRI have shown that hyperdirect

limbic cortical projections are very scarce (Temiz, S�ebille,

Francois, Bardinet, & Karachi, 2020) and those projections

that do get close to the STN might actually terminate in more

medial regions such as the tegmental area (Coenen et al.,

2022).

Here, we test the tripartite hypotheses by imaging the STN

during a perceptual decision making task known as the

random-dot motion task (RDM; Ball & Sekuler, 1982; K. H.

Britten, Shadlen, Newsome, & Movshon, 1993; K. Britten,

Shadlen, Newsome, & Movshon, 1992; Pilly & Seitz, 2009). In

the RDM task, the participants are presented with a cloud of

randomly moving dots of which a subset moves coherently to

the left or the right. The participant has to decide what the

dominant direction of motion is by making left or right button

presses (Fig. 1A). To modulate the hypothesized cortico-basal

ganglia networks, two manipulations were added to the task

based on earlier literature (for review, Mulder, Van Maanen, &

Forstmann, 2014).

The firstmanipulation aimed to evoke limbic processing by

inducing response biases. On half of the trials, subjects were

cued to one of two response options with a higher potential

payoff. Response bias manipulations have been associated

with a ‘limbic’ network including orbitofrontal cortex, hippo-

campus, and ventral striatum (Forstmann, Brown, Dutilh,

Neumann, & Wagenmakers, 2010; Keuken, Müller-Axt, et al.,

2014; Mulder et al., 2014; Mulder, Wagenmakers, Ratcliff,

Boekel, & Forstmann, 2012; Summerfield & Koechlin, 2010).

The second manipulation altered cognitive processing, by

changing the difficulty of the stimulus discrimination task,

which has been shown to change the rate of evidence accu-

mulation during decision making. On half of the trials, the

coherence of the dots on the screen was relatively high (easy

trials), whereas on the other trials the coherence was rela-

tively low (hard trials). This manipulation has been shown to

modulate activity in ‘cognitive’ frontal cortical areas such as

the dorsolateral prefrontal cortex (Heekeren, Marrett,

Bandettini, & Ungerleider, 2004; Kaiser, Lennert, &

Lutzenberger, 2007), as well as in the insula (Binder,

Liebenthal, Possing, Medler, & Ward, 2004; Ho, Brown, &

Serences, 2009; Keuken, Müller-Axt, et al., 2014; Thielscher

& Pessoa, 2007). Furthermore, in earlier work using electro-

physiological recordings and UHF-fMRI, the STN has been

shown to reflect a ‘conflict’ or ‘normalization’ signal (Bogacz

& Gurney, 2007; Frank et al., 2015; Keuken et al., 2015) that

should be inversely proportional to the similarity of two

choice options.

As a third experimental factor of interest, we tested for

motor-related processing in the STN by analyzing response

directions. The STN is considered part of a cortico-basal

ganglia-thalamic ‘motor’ loop, including primary motor cor-

tex (M1; G. E. Alexander & Crutcher, 1990; Temel, Blokland,

et al., 2005; Temel, Visser-Vandewalle, et al., 2005). The

lateralization of motor activity related to response hands in

https://doi.org/10.1016/j.cortex.2022.06.014
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Fig. 1 e A. Example trial of the experimental paradigm. Each trial started with a fixation cross, followed by the potential

payoff cue, which was either an arrow pointing leftwards or rightwards (biased trials) or an X (neutral trials). After the

potential payoff cue, the fixation cross was shown again, followed by the random-dot motion stimulus, during which the

participants made their response bymeans of a button press. After 1.5 s, feedback was shown to present the reward earned,

which depended on the accuracy of the response and the congruency of the potential payoff cue. The trial ended with a

fixation cross. B. Behavioral data. Error bars are within-subject standard error (Cousineau, 2005). Labels on the x-axis are

congruent (C), neutral (N), or incongruent (I) potential payoff cue conditions. C. Model comparison. The bar plot shows, per

subject, the difference between BPIC-values for DDM1 (starting point shift) and DDM2 (drift rate shift), to compare the

strength of evidence for one over the other strategy. Colors indicate winning model per participant; the overall winning

model was DDM3 (lowest summed BPIC) with both drift rate and starting point varying by potential payoff cue. D. Size of

parameter changes due to the experimental manipulations. v ¼ drift rate, z ¼ starting point. E. Quantile probability plot of

model fit (model 2). Crosses are data (D), circles are model (M), colors indicate the difficulty (left two panels, easy (E) and hard

(H)) or congruency of the potential payoff cue (congruent (C), neutral (N), incongruent (I)). Grey dots are individual predictions

using a random sample from the posteriors, the colored circles are the mean of these posteriors predictive data points. The

model overestimates the skewness of the RT distributions, which combined with the slow errors in the data, is suggestive

of an urgency signal. The model furthermore overestimates accuracy after incongruent potential payoff cues.
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M1 forms a benchmark fMRI finding (Dassonville, Zhu,

Uǧurbil, Kim, & Ashe, 1997; S.-G. Kim, Ashe, Georgopoulos,

et al., 1993; S.-G. Kim, Ashe, Hendrich, et al., 1993) and we

hypothesized that such a lateralizationmight also occur in the

STN (Devos et al., 2006).

While performing the task, participants were scanned

using ultra-high field (UHF) 7 Tesla (T) functional MRI. Unlike

fMRI at lower fields, UHF fMRI can potentially resolve fine

activation patterns within the STN, because of its increased

spatial resolution and signal-to-noise ratios (De Hollander,

Keuken, van der Zwaag, Forstmann, & Trampel, 2017; Mileti�c

et al., 2020; van der Zwaag, Sch€afer, Marques, Turner, &

Trampel, 2016). To maximize anatomical specificity of our

functional measurements, we used manually delineated,

anatomically defined masks of the STN, based on high reso-

lution structural images (Keuken, Bazin, et al., 2014). These
STN masks were subdivided in three parts of equal volume

along their dorsolateraleventromedial axis (see Fig. 2) using

an automated procedure (see Methods for details and Dis-

cussion for additional considerations regarding this oper-

ationalization). In Supplementary Materials, we also used an

atlas-based tripartite subdivision that was based on diffu-

sion MRI (Accolla et al., 2014). To maximize the sensitivity of

the functional imaging data, an optimized fMRI protocol was

used that maximizes blood-oxygenation level dependent

(BOLD) sensitivity in the STN (De Hollander et al., 2017; Mileti�c

et al., 2020).

If the STN has functional subdivisions that are both

involved in perceptual decision-making as well as differen-

tially involved to the three main cognitive factors that were

manipulated (response biases, task difficulty, and lateralized

motor processing), the BOLD-response in these three

https://doi.org/10.1016/j.cortex.2022.06.014
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Fig. 2 e Illustration of the three STN segments in individual space overlaid on the .5 mm isotropic averaged ME-GRE image

from dataset 1 (radiological convention). To obtain these segments, manually delineated STN masks were first transformed

to MNI2009c space. On the (demeaned) coordinates of these masks, a principal component analysis was performed to

identify the 3D vector that explained most variance in the coordinates, which was the ventromedialedorsolateral axis.

Within each mask separately, all voxels were given a ‘ventromedial score’, which subsequently was used to divide the

mask in three main segments: The ‘posterior-dorsolateral’ segment A (blue), the central segment B (B), and the ‘anterior-

ventromedial’ segment C (red). Top row corresponds to a coronal view, where three white lines indicate the axial cuts

illustrated on the bottom. The blue region corresponds to the dorsolateral segment A, the green region to central segment B,

and the red region to ventromedial segment C. For an illustration of the three STN segments based on the atlas provided by

(Accolla et al., 2014), see Figure S1.
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segments should be presumably differentially modulated as

well. Specifically, (a) the ventromedial ‘limbic’ segment would

be most sensitive to the response bias cues, (b) the central

‘cognitive’ segment would be most sensitive to the difficulty

manipulation, and (c) the dorsolateral ‘motor’ segment would

be most sensitive to the response hand.

To test these hypotheses, we first contrasted the BOLD

responses during the main task conditions. Specifically, we

tested for differences between BOLD responses between

payoff and neutral cues (limbic), between easy and hard

stimuli (cognitive), and between the two response hands

(motor). Furthermore, we tested whether these contrasts had

different sizes in the three STN subdivisions. Subsequently,

we adopted a model-based cognitive neuroscience approach,

capitalizing on individual differences. This approach poten-

tially increases sensitivity and specificity to differential acti-

vation patterns (De Hollander, Forstmann, & Brown, 2016;

Forstmann, De Hollander, Van Maanen, Alkemade, &

Keuken, 2017; Forstmann, Wagenmakers, Eichele, Brown, &

Serences, 2011; B. M. Turner, Forstmann, Love, Palmeri, &

Van Maanen, 2017; B. M. Turner, Palestro, Mileti�c, &

Forstmann, 2019). Concretely, we fit the diffusion decision

model (Forstmann, Ratcliff, & Wagenmakers, 2016; Ratcliff,

1978, 2006; Ratcliff & McKoon, 2008; Ratcliff, Smith, Brown, &

McKoon, 2016) to the behavioral data. We then tested

whether individual differences in behavioral performance, as

quantified by the DDM, covaried with the individual differ-

ences in the size of the corresponding fMRI contrasts
(Forstmann, Brown, et al., 2010; Forstmann et al., 2008; Mulder

et al., 2014, 2012). In this way, we tested the hypothesis that

the different segments were specifically related to the two

latent processes underlying the two task manipulations.
2. Methods

No part of the study procedures or analysis was publicly pre-

registered prior to the research being conducted. We report

how we determined our sample size, all data exclusions, all

inclusion/exclusion criteria, whether inclusion/exclusion

criteria were established prior to data analysis, all manipula-

tions, and all measures in the study.

2.1. Participants

We analyzed two data sets collected at different scanner sites:

Max Planck Institute for Human Brain and Cognitive Sciences

in Leipzig, Germany, and the Spinoza Centre for Neuro-

imaging in Amsterdam, the Netherlands. The behavioral

paradigmswere identical but for one task parameter, and data

acquisition protocols were built to be as identical as possible

within the technical constraints of both scanners. Total

sample size was determined based on previous studies with

comparable experimental paradigms (Forstmann, Brown,

et al., 2010; Forstmann et al., 2008; Ho et al., 2009; Mulder

et al., 2012).

https://doi.org/10.1016/j.cortex.2022.06.014
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In dataset 1, 19 healthy subjects were scanned (10 males;

mean age 26.9, std. age 2.4, range 23e32). All subjects had

normal or corrected to normal vision and no history of neuro-

logical or psychological disorders. All subjects were right-

handed, as confirmed by the Edinburgh Inventory (Oldfield,

1971). All subjects participated in an earlier study using both

structural and functionalMRI in the basal ganglia (DeHollander

et al., 2017). The study was approved by the ethical committee

at the Medical Faculty, Leipzig University, Germany. All sub-

jects gave written informed consent and received a monetary

reward for their participation, as well as an additional mone-

tary reward based on their task performance.

In dataset 2, 14 healthy subjects were scanned (7 males;

mean age 24.14, std. age 3.3, range 20e29). Two participants

were left-handed. The study was approved by the local ethical

committee of the University of Amsterdam, the Netherlands.

All subjects gave written informed consent and received a

monetary reward for their participation, as well as an addi-

tional monetary reward based on their task performance.

Sample size of the first dataset was determined based on

an earlier study into the STN (De Hollander et al., 2017).

Sample size of the second data set was determined based on

effect size estimates of the first data set. Exclusion criteria

were not established prior to the study; no subjects were

excluded. We report all manipulations and measures in the

study below.

2.2. Experimental paradigm

The experimental paradigm is illustrated in Fig. 1A. The task

paradigm was a random-dot motion (RDM) task (Ball &

Sekuler, 1982; K. H. Britten et al., 1993; K. Britten et al., 1992;

Pilly& Seitz, 2009), inwhich the participant is presentedwith a

cloud of randomly moving dots. A subset of the dots, deter-

mined by the coherence level, moves coherently to the left or

right. The participant is instructed to decide in which direc-

tion the cloud moves on average by making a button press

with the left or right hand. Response time is defined as the

time between the onset of the RDM stimulus and the button

press.

We used a factorial design with potential payoff cue type

and RDM stimulus difficulty as independent variables. Every

trial (384 in total) started with a potential payoff cue (one out

of three different options), followed by the RDM stimulus (one

out of two different difficulty levels), and feedback. The po-

tential payoff cues consisted of an arrow pointing to the left

(25% of the trials) or right (25% of the trials), or a cross

(‘neutral’ condition, the remaining 50% of the trials). Subjects

could earn additional monetary reward based on their per-

formance. The potential payoff cue indicated different poten-

tial monetary rewards: different responses yielded different

payoffs, provided that the responsewas correct. Specifically, if

a responsewas correct and congruent with the direction of the

potential payoff cue arrow, the subject earned .04 euro for that

trial. However, if the response was correct, but incongruent

with the potential payoff cue arrow, the subject earned only

.01 euro for that trial. If a response was correct on a neutral

trial, the subject earned .025 euro. When subjects gave the

incorrect response, they did not gain any reward, regardless of

the cued direction.
The RDM consisted of a cloud of dots in a circle with a

diameter of 5� (dva) and with on average 16.7 dots per square

degree. The dots moved around with a speed of 5 dva per

second. Frames were presented at a speed of 60 frames per

second. On the first three frames, the dots were randomly

positioned within the circle. The task then subsequently loo-

ped over three frames while the dots of the presented frame

were repositioned. Before a frame was drawn, a portion of

dots, determined by the ‘coherence’ parameter (determining

the difficulty of the trial), was repositioned a fixed amount to

the left or right (making sure that the speed was 5� per sec-

ond). The remaining portion of dots was moved by the same

amount, but in a random direction. The RDM was always

presented for 1500 msec, independent of the subject re-

sponses, to prevent visual stimulus duration from confound-

ing response behavior. In dataset 1, the coherences were set to

16% (easy, 50% of trials) and 8% (hard, 50% of trials). In dataset

2, the coherences were set to 35% (easy, 50% of trials) and 15%

(hard, 50% of trials). Since the analyses below rely on within-

subject differences in behavior between difficulty conditions

(and no ceiling or floor performance was reached), this

between-dataset difference in the coherence levels should not

affect the results. Regardless, we accounted for any potential

confounds by incorporating a random effect of dataset in the

whole-brain GLM to model any dataset-related effects in the

group statistics. This random effect was not significant in any

of the regions of interest for any of the contrasts of interest.

After the RDM stimulus, feedback was presented on

whether they were correct and howmuchmoney they earned

on that trial ‘þV0.01’ (incongruent potential payoff cue),

‘þV0.025’ (neutral potential payoff cue), or ‘þV0.04’

(congruent potential payoff cue) for correct trials, or ‘þV0.00’

for incorrect trials. If subjects responded in less than

250 msec, or needed more than 1250 msec, they received the

feedback ‘too fast’ or ‘too slow’, respectively.

2.3. General procedure

After the participants were screened for MRI, they were

introduced to the task on a laptop. They were explicitly

explained how the cue payoffs determine the amount of

money earned per trial, with a few examples. The partici-

pants were then also explained why, with limited informa-

tion, following the potential payoff cues is a rational strategy.

After this introduction, subjects performed 384 trials of an

RDM task with potential payoff cues and two difficulty levels,

divided over 3 runs, each consisting of 128 trials in 19 min

and 21 sec (approximately one hour of functional scanning in

total). Over these 384 trials, subjects could gain an additional

monetary reward, based on their performance, of at most 9

euro and 60 cents. A trial always took 9 sec (3 TRs) in total (see

Fig. 1A). It started with a fixation cross for 0, 750, 1500, or

2250 msec (pseudo-randomly sampled), after which the

response payoff cue was presented for 1000 msec. After the

potential payoff cue, a second fixation cross was presented

for 1000, 1750, 2500, or 3250 msec. Subsequently, the dots

were presented for 1500msec and the subject had to respond

with their left or right index finger. Immediately after the

RDM stimulus, feedback was presented for 500 msec. It

showed how much the subject earned on that trial. For the

https://doi.org/10.1016/j.cortex.2022.06.014
https://doi.org/10.1016/j.cortex.2022.06.014


c o r t e x 1 5 5 ( 2 0 2 2 ) 1 6 2e1 8 8 167
remaining 500e5000 msec in each trial, a blank screen was

presented.

2.4. MRI scanning protocols

Functional neuroimaging of the basal ganglia at UHF is chal-

lenging compared to most cortical brain regions (De

Hollander, Keuken, & Forstmann, 2015; Forstmann et al.,

2017; Keuken, Isaacs, Trampel, van der Zwaag, & Forstmann,

2018). Therefore, we drew upon earlier validated MRI pro-

tocols for both structural (Keuken, Bazin, et al., 2014) and

functional (De Hollander et al., 2017; Mileti�c et al., 2020) im-

aging of the STN. Specifically, in dataset 1, subjects were

scanned in a Siemens MAGNETOM 7 T system (Siemens

Healthineers, Germany) with a 32 channel phased array head

coil (Nova Medical Inc, USA). We used T2*-weighted images

from a spoiled multi-echo Gradient-Recalled Echo (ME-GRE)

protocol (TEs ¼ 11.22, 20.39, 29.57 msec) with a resolution of

.5 mm isotropic that were collected during earlier studies (De

Hollander et al., 2017; Keuken, Bazin, et al., 2014) for visuali-

zation of the STN and its neighboring structures. We also ac-

quired .7 mm isotropic T1-weighted images using a MP2RAGE

sequence (Marques et al., 2010) for registration purposes.

For the functional imaging, we used a recently developed

BOLD fMRI protocol that balances spatial resolution with

subcortical SNR and has a relatively short echo time, ac-

counting for the relatively very short T2*-relaxation values in

the STN (Aquino et al., 2009; De Hollander et al., 2017; Deistung

et al., 2013; Keuken, Bazin, et al., 2014; Keuken et al., 2017). In

dataset 1, a T2*-weighted 2D-EPI protocol with a spatial reso-

lution of 1.5 mm isotropic, 90 slices, interleaved acquisition,

TR ¼ 3000 msec, TE ¼ 14 msec, flip angle ¼ 60�, bandwidth

1446 Hz/Px, echo spacing .8 msec, FOV 192 � 192 � 135 mm,

phase encoding direction A >> P, partial Fourier 6/8, GRAPPA

acceleration factor 3, matrix size 128 � 128 was used. Due to

the increased number of slices compared to the protocol

presented in De Hollander et al. (2017; 90 vs 60), the acquired

volume now covered the entire brain for all subjects. To cor-

rect for field inhomogeneities, a corresponding B0 field map

with the same FOV was acquired (TR ¼ 1500 msec, TE1-2 ¼ 6,

7.02 msec).

In dataset 2, participants were scanned in a Philips Achieva

7 T system (Philips, The Netherlands). The anatomical images

of these subjects were already collected as part of a database

(Alkemade et al., 2020), in which an MP2RAGE-ME protocol

(Caan et al., 2019) was used (.7 mm isotropic) that was used to

calculate quantified T1, T2*, and QSM images. For functional

imaging, we used a T2*-weighted 2D-EPI protocol with a res-

olution of 1.5 mm isotropic, TR ¼ 3000 msec, slice thickness

1.5 mm, 80 slices, interleaved acquisition, TE ¼ 14 msec, flip

angle ¼ 60�, bandwidth 1461 Hz/Px, echo spacing .85 msec,

FOV 192 � 192 � 120 mm, phase encoding direction A >> P,

HalfScan .76, SENSE acceleration factor 3, matrix size

128 � 128 (since the gradients have a lower slew rate, to keep

TRs consistent, we could acquire less slices than in dataset 1).

Again, we collected a B0 field map with the same FOV.

We would like to note that due to the heavy-duty gradient

cycles in our fMRI protocols, there is the potential for serious

heating of the gradient coils. Indeed, when running pilots for

follow-up studies using the same sequence at the Philips site
(dataset 2), we noticed that the temperature in the bore

notably increased during scanning. The scanner system never

reported temperatures outside its safety limits, but we would

like to urge researchers to exhaustively pilot new studies with

gradient-heavy fMRI protocols such as ours on a phantom, as

well as monitor the development of the temperature inside

the bore and on the bore wall during a multi-run scan proto-

col, before commencing data collection on human subjects,

and always ask about the temperature in the bore during

subject debriefings.

2.5. Anatomical labeling

In dataset 1, the left and right STN were manually delineated

on the .5 mm isotropic T2*-weighted ME-GRE images by two

independent raters, following a previously published protocol

(De Hollander et al., 2017; Keuken, Bazin, et al., 2014). Similar

to earlier studies, only voxels that were labeled as part of the

STN by both raters were included in further analyses. In

dataset 2, themanual delineationswere based on QSM images

obtained from the MP2RAGE-ME (Caan et al., 2019) sequence.

The database included manual delineations by two indepen-

dent rates. Again, only voxels that were labeled as part in the

STN by both raters were included in the analyses.

To increase the limited functional signal-to-noise ratio in

the STN without resorting to spatial smoothing, we sub-

divided the STN in smaller segments a-priori. All individual

STN masks were transformed to the space of the ICBM 152

Nonlinear Asymmetrical template version 2009c (MNI2009c;

Fonov, Evans, McKinstry, Almli,& Collins, 2009). On themean-

subtracted coordinates of the voxels in these masks, we per-

formed a principal components analysis to find the 3D vector

(direction) that explained themost variance in the coordinates

(Alkemade et al., 2019).We interpreted this vector as the ‘main

ventromedial-dorsolateral’ axis of the STN (De Hollander

et al., 2014; Haynes & Haber, 2013; Temel, Blokland, et al.,

2005).

Then, for every individual subject mask separately, all voxel

coordinates on this axis were given a ‘ventromedial score’.

This voxel-wise score allowed us to divide individual left and

right STN masks into three segments: the ‘posterior-dorso-

lateral’ (segment A), the ‘central’ segment (segment B), and

the ‘anterior-ventromedial’ segment (segment C; see Fig. 1).

Note that these segments always covered the entire individual

anatomical mask for each subject separately, with an equal

volume. The segments were transformed to individual func-

tional (EPI) space by the inverse transformation from indi-

vidual to standard MNI space, as provided by the fmriprep

registration procedure, using a single interpolation step, and

used as regions of interest (ROIs) in further analyses. On

average, the segments had a volume of 22.5 mm3 (std

6.9 mm3), corresponding to approximately 7 voxels in func-

tional space (1.5 mm isotropic resolution), and never over-

lapped with other segments.

In a second set of analyses, we defined ROIs based on the

tripartite subdivision atlas provided by (Accolla et al., 2014),

which defined amotor, associative, and limbic part of the STN

based on diffusion MRI data. This atlas was warped to indi-

vidual space using the non-linear transformation provided by

fmriprep. Contrary to the PCA-based subdivisions, the atlas-
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based subdivisions were not of equal volume: The motor

segment is 38 mm3 (std 3.8 mm3), the associative segment

36.3 mm3 (std 4.9 mm3), and the limbic segment 13 mm3 (std

2.6mm3), corresponding to approximately 12, 11, and 4 voxels,

respectively, in functional space. In the main text below, we

report the ROI analyses and results based on the PCA sub-

divisions, and we refer to the Supplementary Materials for the

results of the same analyses based on the atlas subdivisions.

Both sets of masks lead to the same conclusions.

2.6. MRI data preprocessing

Results included in this manuscript come from preprocessing

performed using fMRIPrep 20.0.0 (Esteban et al., 2018;

RRID:SCR_016216, 2019), which is based on Nipype 1.4.2

(Gorgolewski et al., 2011, 2018 RRID:SCR_002502).

2.6.1. Anatomical data preprocessing
The T1-weighted (T1w) imagewas corrected for intensity non-

uniformity (INU) with N4BiasFieldCorrection (Tustison et al.,

2010), distributed with ANTs 2.2.0 (Avants, Epstein,

Grossman, & Gee, 2008 RRID:SCR_004757), and used as T1w-

reference throughout the workflow. The T1w-reference was

then skull-stripped with a Nipype implementation of the

antsBrainExtraction.sh workflow (from ANTs), using OASI-

S30ANTs as target template. Brain tissue segmentation of

cerebrospinal fluid (CSF), white-matter (WM) and gray-matter

(GM) was performed on the brain-extracted T1w using fast

(FSL 5.0.9, RRID:SCR_002823; Zhang, Brady, & Smith, 2001).

Brain surfaces were reconstructed using recon-all (FreeSurfer

6.0.1, RRID:SCR_001847; Dale, Fischl, & Sereno, 1999), and the

brain mask estimated previously was refined with a custom

variation of the method to reconcile ANTs-derived and

FreeSurfer-derived segmentations of the cortical gray-matter

of Mindboggle (RRID:SCR_002438; A. Klein et al., 2017).

Volume-based spatial normalization to one standard space

(MNI152NLin2009cAsym) was performed through nonlinear

registration with antsRegistration (ANTs 2.2.0), using brain-

extracted versions of both T1w reference and the T1w tem-

plate. The following template was selected for spatial

normalization: ICBM 152 Nonlinear Asymmetrical template

version 2009c (Fonov et al., 2009; RRID:SCR_008796; Template-

Flow ID: MNI152NLin2009cAsym).

2.6.2. Functional data preprocessing
For each of the 3 BOLD runs found per subject (across all tasks

and sessions), the following preprocessing was performed.

First, a reference volume and its skull-stripped version were

generated using a custommethodology of fMRIPrep. In dataset

1, a B0-nonuniformity map (or fieldmap) was estimated based

on a phase-difference map calculated with a dual-echo GRE

(gradient-recall echo) sequence, processed with a custom

workflow of SDCFlows inspired by the epidewarp.fsl script

and further improvements in HCP Pipelines (Glasser et al.,

2013). In dataset 2, a B0-nonuniformity map was directly

measured with an MRI scheme designed with that purpose

(typically, a spiral pulse sequence). The fieldmap was then co-

registered to the target EPI (echo-planar imaging) reference

run and converted to a displacements field map (amenable to

registration tools such as ANTs) with FSL's fugue and other
SDCflows tools. For one subject of dataset 2, no B0-

nonuniformity map was available. For this subject, a defor-

mation field to correct for susceptibility distortions was esti-

mated based on fMRIPrep's fieldmap-less approach. The

deformation field is that resulting from co-registering the

BOLD reference to the same-subject T1w-reference with its

intensity inverted (Huntenburg, 2014; Wang et al., 2017).

Registration is performed with antsRegistration (ANTs 2.2.0),

and the process regularized by constraining deformation to be

nonzero only along the phase-encoding direction, and

modulated with an average fieldmap template (Treiber et al.,

2016). Based on the estimated susceptibility distortion, a cor-

rected EPI (echo-planar imaging) reference was calculated for

a more accurate co-registration with the anatomical refer-

ence. The BOLD reference was then co-registered to the T1w

reference using bbregister (FreeSurfer) which implements

boundary-based registration (Greve & Fischl, 2009). Co-

registration was configured with six degrees of freedom.

Head-motion parameters with respect to the BOLD reference

(transformation matrices, and six corresponding rotation and

translation parameters) are estimated before any spatiotem-

poral filtering using mcflirt (FSL 5.0.9; Jenkinson, Bannister,

Brady, & Smith, 2002). BOLD runs were slice-time corrected

using 3dTshift from AFNI 20160207 (Cox & Hyde, 1997;

RRID:SCR_005927). The BOLD time-series (including slice-

timing correction when applied) were resampled onto their

original, native space by applying a single, composite trans-

form to correct for head-motion and susceptibility distortions.

These resampled BOLD time-series will be referred to as pre-

processed BOLD in original space, or just preprocessed BOLD. The

BOLD time-series were resampled into standard space,

generating a preprocessed BOLD run in MNI152NLin2009cAsym

space. First, a reference volume and its skull-stripped version

were generated using a custom methodology of fMRIPrep.

Several confounding time-series were calculated based on the

preprocessed BOLD: framewise displacement (FD), DVARS and

three region-wise global signals. FD and DVARS are calculated

for each functional run, both using their implementations in

Nipype (following the definitions by Power et al., 2014). The

three global signals are extracted within the CSF, theWM, and

the whole-brain masks. Additionally, a set of physiological

regressorswere extracted to allow for component-based noise

correction (CompCor; Behzadi, Restom, Liau, & Liu, 2007).

Principal components are estimated after high-pass filtering

the preprocessed BOLD time-series (using a discrete cosine filter

with 128s cut-off) for the two CompCor variants: temporal

(tCompCor) and anatomical (aCompCor). tCompCor compo-

nents are then calculated from the top 5% variable voxels

within a mask covering the subcortical regions. This subcor-

tical mask is obtained by heavily eroding the brain mask,

which ensures it does not include cortical GM regions. For

aCompCor, components are calculatedwithin the intersection

of the aforementioned mask and the union of CSF and WM

masks calculated in T1w space, after their projection to the

native space of each functional run (using the inverse BOLD-

to-T1w transformation). Components are also calculated

separately within the WM and CSF masks. For each CompCor

decomposition, the k components with the largest singular

values are retained, such that the retained components' time

series are sufficient to explain 50 percent of variance across
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the nuisance mask (CSF, WM, combined, or temporal). The

remaining components are dropped from consideration. The

head-motion estimates calculated in the correction step were

also placed within the corresponding confounds file. The

confound time series derived fromheadmotion estimates and

global signals were expanded with the inclusion of temporal

derivatives and quadratic terms for each (T. D. Satterthwaite

et al., 2013). Frames that exceeded a threshold of .5 mm FD

or 1.5 standardised DVARSwere annotated asmotion outliers.

All resamplings can be performed with a single interpolation

step by composing all the pertinent transformations (i.e.,

head-motion transform matrices, susceptibility distortion

correction when available, and co-registrations to anatomical

and output spaces). Gridded (volumetric) resamplings were

performed using antsApplyTransforms (ANTs), configured

with Lanczos interpolation to minimize the smoothing effects

of other kernels (Lanczos, 1964). Non-gridded (surface)

resamplings were performed using mri_vol2surf (FreeSurfer).

Many internal operations of fMRIPrep use Nilearn .6.1

(Abraham et al., 2014; RRID:SCR_001362), mostly within the

functional processing workflow. For more details of the

pipeline, see the section corresponding to workflows in fMRI-

Prep's documentation (https://fmriprep.readthedocs.io/en/

latest/workflows.html).

2.7. Data analysis

Two subjects performed only 256, instead of 384 trials, due to

fatigue (the entire experiment took approximately an hour).

After careful inspection of the data set, these subjects were

included in the analyses to improve statistical power.

2.7.1. Behavioral analyses
To test whether the experimental manipulations were suc-

cessful, behavioral data were analyzed using frequentist

mixed effects models (MEMs; Barr, Levy, Scheepers, & Tily,

2013; Gelman & Hill, 2007). Two MEMs were fit: One logistic

model, to test the effects of the two manipulations on choice

accuracy, and one linear model, to test the effects on choice

response times (RTs). The logistic MEM included two main

task manipulations: potential payoff cue congruency

(congruent, neutral, incongruent), and difficulty (easy, hard),

as well as their interaction. The linear MEM included the

aforementioned task manipulations as well as the response

accuracy, plus all interactions. For bothmodels, subjects were

included as random intercepts. We report estimates of the

MEMs coefficients, their standard errors (SE), 95% confidence

intervals (CIs), and a p-value obtained from a t-test using

Satterthwaite's method to estimate the degrees of freedom (F.

E. Satterthwaite, 1941). These analyses made use of software

packages lme4 (Bates, M€achler, Bolker, & Walker, 2015) and

lmerTest (Kuznetsova, Brockhoff,& Christensen, 2017) for the R

programming language (R Core Team, 2017).

Next, we used the DDM to estimate parameters quanti-

fying key properties of the latent cognitive processes un-

derlying decision making. The DDM assumes that

participants gradually accumulate noisy evidence for each

choice option, until a threshold level of evidence is reached.

At that point, the participant commits to the decision and

executes themotor response. The process is characterized by
four main parameters: The starting point of evidence accu-

mulation z, which lies between thresholds -a and a which

quantifies response caution, the mean speed of evidence

accumulation v (the drift rate), and the non-decision time t0

that quantifies the time required for perceptual encoding

processes and motor execution. The ‘full’ DDM assumes

additional parameters for between-trial variabilities in drift

rate sv, starting point sz and non-decision time st0, which we

did not estimate but fixed to 0. The between-trial variabilities

in starting point and drift rate have been shown to be difficult

to accurately recover (Boehm, Annis, et al., 2018). However,

in an exploratory analysis, we also fit the winning DDM (re-

ported below) including sv and sz, and found that the esti-

mates of v, a, z, and t0 were highly correlated (all r > .99) with

the same estimated obtained from a DDM with sv and sz
constrained to 0. Hence, not estimating sv and sz did not bias

our parameters (for further discussion on estimating the

between-trial variability parameters, see Boehm, Annis,

et al., 2018). Within-trial noise parameter s was fixed to 1 to

satisfy scaling constraints (Donkin, Brown, & Heathcote,

2009; van Maanen & Mileti�c, 2021).

We fit three different DDMs to the behavioral data. All

three DDMs assumed that choice difficulty affected drift rates

(e.g., Palmer, Huk, & Shadlen, 2005; Ratcliff & McKoon, 2008;

Voss, Rothermund, & Voss, 2004), which we modelled by

independently estimating two drift rates, one per difficulty

condition. The DDMs differed in how they explained the effect

of the payoff cues: DDM1 assumed potential payoff cues

biased starting points z (Diederich & Busemeyer, 2006;

Edwards, 1965; Link&Heath, 1975; Mulder et al., 2012; Ratcliff,

1985; Ratcliff& Rouder, 1998; Voss et al., 2004); DDM2 assumed

potential payoff cues biased drift rates (Ashby, 1983; Diederich

& Busemeyer, 2006; Mulder et al., 2012; Ratcliff, 1981; Urai, Gee,

& Tsetsos, 2019); and DDM3 assumed both types of bias were

present (Mulder et al., 2012).

To model starting point bias, we estimated the neutral

starting point plus a starting point shift in the direction of the

potential payoff cue, such that zleft cue ¼ zneutral þ zcue�shift and

zright cue ¼ zneutral � zcue�shift (in our parametrization, the DDM's
upper threshold corresponds to the leftward response). Simi-

larly, to model drift rate bias, we assumed that

vleft cue ¼ vþ vcue�shift and vright cue ¼ v� vcue�shift, where the sign

of v is negative if the dots move towards the right (and the size

of v depends on the difficulty condition). In total, the three

DDMs had six ðveasy; vhard; zneutral; zcue�shift; a; t0Þ, six ðveasy; vhard;
vcue�shift;z;a;t0Þ, and seven ðveasy; vhard; vcue�shift; zneutral; zcue�shift;

a; t0Þ free parameters, respectively.

Since we intend to use the median posterior parameter

estimates in correlation analyses, we did not estimate pa-

rameters hierarchically, since this would create a dependency

between subjectelevel parameters and violate the assump-

tion of independence of observations in correlation tests

(Boehm, Marsman, Matzke, & Wagenmakers, 2018). Subject-

level posterior distributions of each model's parameters

were estimated using a combination of differential evolution

(DE) and Markov-chain Monte Carlo sampling (MCMC)

with MetropoliseHastings (Ter Braak, 2006; B. M. Turner,

Sederberg, Brown, & Steyvers, 2013). The default sampling

settings, as implemented in the Dynamic Models of Choice R

software (Heathcote et al., 2019), were used: The number of
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chains, D, was three times the number of free parameters.

Cross-over probability (as part of the differential evolution)

was set to 2:38=
ffiffiffiffi

D
p

. Migration probability was set to .05 (only

during burn-in). Convergence was assessed using visual in-

spection of the chain traces and Gelman-Rubin diagnostic

(Brooks & Gelman, 1998; Gelman & Rubin, 1992) (individual

and multivariate potential scale factors <1.02 in all cases).

Datapoints with responses faster than 150 msec were

considered as guesses and removed prior to fitting (Ratcliff &

Childers, 2015; Ratcliff & Tuerlinckx, 2002).

Independent truncated normal distributions were used as

mildly informed priors for each parameter, as follows:

a � Nð2; 0:5Þ truncated at 0 and 5, veasy=hard � Nð2;0:5Þ truncated
at �5 and 7, z � Nð0:5; 0:1Þ, truncated at .3 and .7,

t0 � Nð0:3; 0:05Þ truncated at 0 and 1 s, vcue�shift � Nð0; 1Þ trun-
cated at �5 and 7, and zcue�shift � Nð0; 0:1Þ truncated at �.3

and .3.

The three DDMs were compared using the Bayesian Pre-

dictive Information Criterion (BPIC; Ando, 2007). Lower BPIC

values indicate a better trade-off between quality of fit and

model complexity. To visualize the quality of model fit of the

winning model, we took 100 random samples from the pos-

terior parameter distributions, with which we simulated the

DDM (using the same trial numbers as in the experiment). We

then calculated the 10th, 30th, 50th, 70th and 90th simulated

RT quantile per condition for both the correct and error re-

sponses, and compared their (across-simulation) mean values

with the empirical data (Fig. 1E).

2.7.2. Whole-brain GLMs
We then fit voxel-wise whole-brain GLMs to the fMRI data, in

order to test whether the whole-brain BOLD contrasts are in

line with the literature. In the first-level GLMs, we included

eight task regressors: Leftward, rightward, and neutral po-

tential payoff cues (on cue onset); easy and hard stimuli (on

RDM stimulus onset); left and right responses (on response

time); and errors (on feedback onset). Errors were explicitly

modeled to decorrelate the effects of task difficulty from the

effects of error (feedback) processing. It is well-known that

limbic structures show heightened activity after an error has

been made (e.g., W. H. Alexander & Brown, 2011; T. A. Klein,

Ullsperger, & Danielmeier, 2013; Ullsperger, Harsay, Wessel,

& Ridderinkhof, 2010). Therefore, ‘drift rate’-related activity

in limbic areas such as the insula might be a result of a larger

number of errors in trials with a lower drift rate, unless the

BOLD response related to errors is modeled. All eight task re-

gressors were convolved in the canonical double-gamma he-

modynamic response function (HRF; Glover, 1999), and their

temporal derivatives were included in the design matrix.

Additionally, we included a set of 16 cosines to model low-

frequency drifts, and seven head-motion parameters (trans-

lation and rotation in 3 dimensions, and framewise displace-

ment), DVARS (Power et al., 2014), and the first five aCompCor

components (Behzadi et al., 2007) to model physiological

noise. GLMs were fit using FSL FEAT (Woolrich, Ripley, Brady,

& Smith, 2001). A smoothing kernel (FWHM ¼ 5 mm, c.f. De

Hollander et al., 2017; Mileti�c et al., 2020) was used to

spatially smooth the data prior to fitting (Smith& Brady, 1997).

Note that functional data were only smoothed prior to the
whole-brain GLMs; the ROI-based analyses (both deconvolu-

tions and GLMs) were based on the unsmoothed functional

data.

In a second-level GLM, the three runs per subject were

combined using a fixed effects analysis. In a third-level GLM,

FSL's FLAME1 (Woolrich, Behrens, Beckmann, Jenkinson, &

Smith, 2004) was used. The design matrix included a group-

wise intercept, a dummy variable to model potential dataset

differences, and three model-based subject-wise covariates:

(1) the drift rate difference (vhard � veasy); (2) the starting point

shift (zcue�shift); (3) the drift rate shift (vcue�shift). These covariates

were demeaned.

Threemain contrasts of interest were defined: (1) Response

left e response right, to test for motor lateralization effects; (2)

Payoff e neutral cues, to test for group-level main effects (i.e.,

testing for regions showing differential BOLD-responses after

payoff compared to neutral cues) as well as covariances with

potential payoff cue-related starting point or drift rate shifts

(i.e., testing for regions in which the BOLD contrast size

covaries with zcue�shift or vcue�shift); (3) Hard e easy stimuli, to

test for group-level main effects and across-subject co-

variances with drift rate shifts (vhard � veasyÞ. All third-level

statistical parametric maps (SPMs; Fig. 3) were thresholded

using FSL's cluster by first voxel-wise thresholding at z ¼ 3.1

and then at P < .05 at the cluster level (Worsley, 2001).

2.7.3. BOLD response deconvolutions
Next, we testedwhetherwe had sufficient BOLD sensitivity, by

estimating the shape and size of BOLD responses in the STN

segments using deconvolution analyses (Dale, 1999; Gitelman,

Penny, Ashburner, & Friston, 2003; Glover, 1999; Poldrack,

Mumford, & Nichols, 2011). We first extracted the unsmoothed

mean timeseries within each of the six (three per hemisphere)

STN segments. Each timeseries was rescaled to percent signal

change by dividing the timeseries by the mean signal value,

multiplying by 100, and subtracting 100. The timeseries from

the three runs per subject were then concatenated. Then, we

performed a deconvolution using Fourier basis sets (Bullmore

et al., 1996; Gitelman et al., 2003) with 7 regressors (an inter-

cept, three sines, and three cosines) for two events of interest:

The moving dots stimulus and potential payoff cue. Since the

purpose of this deconvolution analysis is not to identify con-

trasts between the task manipulations, but instead to char-

acterise the shape of the HRF, we ignored RDM stimulus

difficulty and potential payoff cue types. Additionally, the

model contained the same set of nuisance variables as used in

the whole-brain GLM above: Five aCompCor components, 16

cosines tomodel low-frequency scanner drift, the DVARS, and

seven head motion related parameters (rotation and trans-

lation in three dimensions, and the framewise displacement).

Themodel was fit using ordinary least squares. Deconvolution

analyses were performed using nideconv (De Hollander,

Knapen, & Snoek, 2019).

2.7.4. ROI-wise GLMs
Subsequently, we defined four GLMs, each fit to the same six

STN mean timeseries separately, to test how strongly the six

segments responded to the task events. Importantly, and

contrary to the whole-brain GLMs above, all STN timeseries
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Fig. 3 e Statistical parametric maps of the main contrasts of interest in the whole-brain voxel-wise GLM analyses. Colors

represent z-values of the group-level GLM, thresholded at z ¼ 3.1 and p < .05 (two-sided), corrected at the cluster level using

FSL's family-wise error rate correction. Dual color bars are on the same scale, blue is used (top row) indicate negative z-

values. For the difficulty contrast (bottom-left), yellow indicates the z-value of the group-level intercept, whereas the green

indicates the z-values of the group-level covariance with the drift rate shift. Coordinates are in MNI 2009c (1 mm) space.
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were extracted from the unsmoothed functional timeseries

data to prevent the mixture of signals originating from the

different segments (De Hollander et al., 2015). In all four GLMs

(detailed below), task events were convolved with the ca-

nonical double-gamma HRF (Glover, 1999), and their temporal

derivatives were included. Additionally, the design matrix

included temporal derivatives of the main regressors of in-

terest, and (as in the previous analyses) the first five aComp-

Cor components to model physiological noise, seven head

motion related parameters, DVARs, and a set of 16 cosines to

model low-frequency scanner drifts. The GLMs were fit using

ordinary least squares. The estimated BOLD responses,

quantified in the GLM's parameter estimates (betas), were

then used as a dependent variable in higher-level analyses to

test for functional specialization of STN segments, as detailed

below.

2.7.4.1. GLM1: DIFFICULTY AND POTENTIAL PAYOFF CUE VALENCE EF-

FECTS. The first GLM included (1) easy and (2) hard stimuli (RDM

stimulus onset locked), and (3) payoff and (4) neutral cues

(potential payoff cue onset locked) as task events of interest.

Firstly, we tested for the presence of the following two con-

trasts of interest using a within-subject (frequentist and

Bayesian) t-test for each segment separately: task difficulty

(hard e easy), and potential payoff cue type (payoff e neutral).

We hypothesized that ‘cognitive’ segment B should respond

differently to hard compared to easy trials, and ventromedial

‘limbic’ segment C should show a larger BOLD response after

payoff than after neutral cues.

Although these tests indicate whether contrasts were

present in each STN segment, the tripartite model of func-

tional specialization holds that the STN segments differ in
their responses. Suppose that STN segment B indeed has

higher BOLD responses for hard than for easy trials, then this

would only support functional specialization of segments if

the other segments do not (or less strongly) show that contrast

(Nieuwenhuis, Forstmann, & Wagenmakers, 2011). Hence, we

then tested for interaction effects between the experimental

conditions and the segments using linear MEMs, with task

event type, STN segment (A, B or C), and their interaction to

predict the BOLD response size:

BOLD � b0 þb1*eventþ b2*segmentþ b3*segment� event (1)

To avoid confusion with the GLM's beta that quantify the

BOLD response size, we refer to the MEM parameter estimates

with b. We fit MEM (1) twice: Once using easy and hard stimuli

as events, and once using payoff and neutral cues as pre-

dictors. Subjects were included as random intercepts.

Significant contributions of the segment� event interaction

would support functional specialization of segments.We used

both frequentist and Bayesian approaches to quantify

whether this interaction was supported by the data. Firstly,

we estimated the p-value associated with the interaction term

segment� event. Since the predictor segment consists of three

levels, we report F-tests using Satterthwaite's method (F. E.

Satterthwaite, 1941) to approximate the denominator degrees

of freedom. Secondly, we used a Bayesian model comparison

approach, in whichwe sequentially removed individual terms

from MEM (1) until the simplest (intercept-only) model

remained (i.e., comparing all seven possible models). These

models were compared using Bayes factors, which quantify

the likelihood ratios of the models (Kass & Raftery, 1995; Ly,

Verhagen, & Wagenmakers, 2016). Contrary to frequentist p-

values, Bayes factors can quantify evidence both in favor of

https://doi.org/10.1016/j.cortex.2022.06.014
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and against a hypothesis. To describe the strength of evidence

(ranging from ‘anecdotal’ to ‘decisive’), we use the conven-

tions proposed by Wetzels and Wagenmakers (2012), who

adapted Jeffrey's (1961) original proposal. Bayesian analyses

were performed using the BayesFactor (Morey et al., 2018)

software for the R programming language (R Core Team, 2017).

2.7.4.2. GLM2: POTENTIAL PAYOFF CUE LATERALIZATION EFFECTS. Po-
tential payoff cue-related BOLD effects might be lateralized

and represent some a-priori motor facilitation or suppression

towards a left or right response. Such a potential payoff cue-

related lateralized signal has been shown before in the puta-

men (Forstmann, Brown, et al., 2010) and could potentially

cancel out potential payoff cue-related effects when cue di-

rection is ignored. We therefore also fit GLM2 which took into

account the direction of the potential payoff cue. It contained

the following task regressors: (1) neutral cue, (2) payoff cue

(left), (3) payoff cue (right) (all cue onset locked), (4) easy RDM

stimulus, and (5) hard RDM stimulus (both RDM stimulus

onset locked). The contrast of interest was payoff cue

(left) > payoff cue (right).

We tested whether the BOLD responses are different after

contralateral potential payoff cues compared to ipsilateral

cues, and whether there is any difference therein between

STN segments. We constructed a new MEM (1) but using ipsi-

lateral and contralateral cues (relative to the STN hemisphere)

as event types. We used the same frequentist and Bayesian

approach as described in 2.7.4.1 to test whether the MEM's
interaction term, which would indicate functional speciali-

zation of STN segments, is supported by the data.

2.7.4.3. GLM3: DIFFICULTY EFFECTS, DE-CONFOUNDED FROM ERROR-
RELATED PROCESSING. As mentioned above, errors are known to

cause activity in limbic areas, which could confound drift rate-

related activity. To test for activity related to drift rates that

cannot be explained by a difference in the error rate, we fit

GLM3 that de-confounded the task difficulty from error trials.

Here, easy and hard event types were separated by the accu-

racy of the response on that trial. GLM3 included the following

regressors: (1) neutral cue, (2) payoff cue, (3) easy RDM stim-

ulus (correct), (4) easy RDM stimulus (error), (5) hard RDM

stimulus (correct), and (6) hard RDM stimulus (error). The two

potential payoff cue regressors were locked to the potential

payoff cue onset, the four RDM stimulus regressors were

locked to the RDM stimulus onset. The main contrast of in-

terest for this GLM was ‘hard RDM stimulus (correct) > easy

RDM stimulus (correct)’. To test for the presence of functional

subregions, we again constructed a MEM as described Equa-

tion (1), using the task events ‘hard RDM stimulus (correct)’

and ‘easy RDM stimulus (correct)’. Again, the frequentist and

Bayesian methods described in 2.7.4.1 were used to test for

functional specialization of STN segments.

2.7.4.4. GLM 4: MOTOR LATERALIZATION EFFECTS. To test for later-

alized motor activity in the STN, we also fit GLM4, focusing on

responses. It included the following regressors: (1) neutral cue,

(2) potential payoff cue (both potential payoff cue onset

locked), (3) easy trials, (4) hard trials (both RDM stimulus onset

locked), (5) left responses, and (6) right responses (both

response onset locked). We hypothesized that potential STN
‘motor’ segments should show lateralized motor activity.

Specifically, we expected to find increased activity for left

versus right responses for right STN segment A versus the left

STN segment A, and vice versa. We repeated the LMEM anal-

ysis described in 2.7.4.1 but using left response and right

response as events of interest. The same frequentist and

Bayesian methods described previously were used to test for

functional specialization of segments.

2.7.5. Interindividual correlations
We then tested whether interindividual variability in DDM

parameters was related to interindividual variability in the

corresponding BOLD effects (Forstmann et al., 2008, 2011;

Lebreton, Bavard, Daunizeau, & Palminteri, 2019). The first

hypothesis pertained to potential payoff cue-related bias and

STN activity. The shift in starting point of every subject was

correlated with the contrast ‘payoff cue > neutral cue’ (ROI-

wise GLM1). We expected STN ‘limbic’ segment C involved in

implementing response biases (the putative ‘limbic’ area) to

show such an across-subject correlation between the size of

the starting point shift and the size of the BOLD response

contrast. We repeated this analysis with the potential payoff

cue-related drift rate bias as covariate, with the same hy-

pothesis. Correlations were tested using frequentist and

Bayesian tests (Wetzels & Wagenmakers, 2012) as imple-

mented in the BayesFactor software package (Morey et al.,

2018).

The second hypothesis pertained to the difficulty manip-

ulation and the resulting drift rate reduction. Specifically, the

reduction in drift rate for hard compared to easy trials was

correlated, across subjects, with the size of the contrast ‘hard

RDM stimulus > easy RDM stimulus’ (ROI-wise GLM1). We

expected that activity in the central, ‘cognitive’ STN segment

B, should show a significant correlation with the drift rate

effect of the difficulty manipulation. We test this hypothesis

using the same frequentist and Bayesian correlation tests.
3. Results

We first describe three sets of control analyses. Firstly, we test

whether the experimental manipulations led to the expected

behavioral effects. Secondly, we perform whole-brain voxel-

wise GLMs to ensure that the overall patterns of BOLD re-

sponses elicited by the experimentalmanipulations are in line

with the literature. Thirdly, we test whether we have suffi-

cient signal quality in the STN segments to be able to detect

BOLD responses. After these control analyses, we turn to the

confirmatory analysis to test for functional specialization of

STN segments.

3.1. Behavioral data

The effects of the taskmanipulations on accuracy and RTs are

shown in Fig. 1B. We fit a logistic MEM to predict choice ac-

curacy using potential payoff cue congruency and stimulus

difficulty. Compared to the model's intercept (corresponding

to the difficult, neutral cue condition), accuracy was higher on

easy trials (b¼ .54, SE¼ .06, 95% CI [.42, .66], p < .001), as well as

on trials with a congruent potential payoff cue (b ¼ .24,
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SE ¼ .07, 95% CI [.10, .38], p < .01), but lower on trials with an

incongruent potential payoff cue (b ¼ �.42, SE ¼ .07, 95% CI

[�.56,�.29], p¼ .001). The interaction terms between difficulty

and potential payoff cue congruency were not significant.

Secondly, we fit a linear MEM to predict choice RT using

potential payoff cue congruency, RDM stimulus difficulty, and

choice accuracy as predictors, plus all interactions. The

intercept corresponded to correct responses on hard trials

with a neutral cue. In this model, we found main effects

indicating that RTs were significantly faster for easy trials

(b¼�.05, SE¼ 5.45*10�3, 95% CI [�.06,�.04], p < .001) as well as

for trials with congruent potential payoff cues (b ¼ �.02,

SE ¼ 6.77*10�3, 95% CI [�.03, �.01], p ¼ .004), but slower for

errors (b¼ .03, SE¼ 7.08*10�3, 95% CI [.02, .04], p < .001) and for

incongruent trials (b ¼ .02, SE ¼ 7.24*10�03, 95% CI [.00, .03],

p ¼ .035). Furthermore, we find interactions between choice

accuracy and potential payoff cue congruency: In incorrect

responses, RTs were higher after congruent cues compared to

neutral cues (b ¼ .03, SE ¼ .01, 95% CI [.01, .06], p ¼ .016) and

lower after incongruent cues (b ¼ �.04, SE ¼ .01, 95% CI [�.06,

�.02], p < .001). Finally, there was an interaction between

difficulty and accuracy that indicated that for error responses,

the effect of easy trials (versus hard trials) was smaller than

for correct responses (b ¼ .04, SE ¼ .01, 95% CI [.02, .06],

p < .001). The other interaction terms were not significant.

Hence, the effects of the manipulations can be summa-

rized as follows. Hard trials led to less accurate and slower

responses, and the effect on RTs was larger for correct

compared to error RTs. Furthermore, congruent potential

payoff cues increased accuracy, and if an error was made, the

corresponding RT was high (compared to neutral cues).

Incongruent trials decreased accuracy, and the errors were

fast (compared to neutral cues).

The effects of both manipulations are qualitatively

consistent with the DDM's predictions. Choice difficulty is

assumed to affect drift rates (e.g., Palmer et al., 2005; Ratcliff&

McKoon, 2008; Voss et al., 2004). Increasing the drift rate leads

to faster, more accurate responses, which we indeed find in

the difficulty manipulation. Potential payoff cues are often

thought to cause a bias in the starting point z (Diederich &

Busemeyer, 2006; Edwards, 1965; Link & Heath, 1975; Mulder

et al., 2012; Ratcliff, 1985; Ratcliff & Rouder, 1998; Voss et al.,

2004); and/or drift rate (Ashby, 1983; Diederich & Busemeyer,

2006; Mulder et al., 2012; Ratcliff, 1981; Urai et al., 2019). Both

biases lead to overall faster responses andmore responses for

the biased option than for the unbiased option. However, the

two types of bias differ in their predictions about the shapes of

the RT distributions, as well as about the relative speed of

correct and incorrect choices: A start point bias predicts that

choices corresponding to the unbiased option are slower

compared to choices corresponding to the biased option,

whereas a drift rate bias predicts equally fast biased and un-

biased choices.

Hence, formal model fitting was used to discover which

type of bias was likely present in the participants' data. Three
DDMs were fit, all assuming that the difficulty manipulation

affected drift rates, but assumed that the potential payoff cues

biased starting points (DDM1), drift rates (DDM2; i.e., both the

potential payoff cue and difficulty manipulation affect drift

rates), or both (DDM3). Formal model comparison (Fig. 1C)
indicated that, when summing BPICs across subjects, the third

model provided the most parsimonious trade-off between

quality of fit andmodel complexity. However, a comparison of

individual participants’ BPICs (Fig. 1C, colors) shows that

DDM1wasmost parsimonious for 17 participants, DDM2 for 7,

and DDM3 for the remaining 9. Thus, there is substantial

interindividual variability in the strategies that participants

used: A starting point shift was most common, followed by

both a combination of starting point and drift rate shifts, but a

drift rate shift alone was least common. Most participants (26)

used one strategy only, but across subjects, DDM3, allowing for

both strategies, provided the most parsimonious fit.

To take into account the observed interindividual strategic

differences in subsequent analyses, we used Bayesian model

averaging (Hoeting, Madigan, Raftery, & Volinsky, 1999) to

calculate subject-wise average (across DDMs) parameters. In

this approach, a weighted average of each DDM parameter is

calculated per subject, with wBPIC-values (Wagenmakers &

Farrell, 2004) functioning as weights. Hence, better-fitting

DDMs contribute more to the weighted parameter estimate.

The averaged drift rate effect of difficulty (Dvdifficulty ¼ vhard �
veasy) and the averaged potential payoff cue-related drift rate

ðDvcue) and starting point shift ðDzcueÞ parameters are shown in

Fig. 1D.

The posterior predictive distributions in Fig. 1E show the

quality of fit of DDM3. Whereas DDM3 accounts for the me-

dian RTs in most conditions reasonably well, there is a strong

misfit in the predicted RT distribution skewness: The DDM

predicts much stronger right-skewed distributions than seen

in the data, and also misfits the leading edge. Possible causes

of this are the (implicit) deadlines of 1.5 sec and presence of a

delay between the choice and feedback, which both have been

shown to induce urgency effects that decrease skewness in RT

distributions (Evans & Hawkins, 2019; Hawkins, Forstmann,

Wagenmakers, Ratcliff, & Brown, 2015; Katsimpokis,

Hawkins, & Van Maanen, 2020; Mileti�c & Van Maanen, 2019).

Another indication that an urgency signal influenced decision

making are the error RTs, which are slower than the correct

RTs. Since urgency entails that the amount of evidence

required to inform a decision decreases with decision time,

slow decisions are based on less evidence and therefore more

likely to be erroneous than faster decisions (Ditterich, 2006;

Hawkins et al., 2015).

In summary, the task manipulations led to the expected

effects on behavior. While the quality of fit of the DDM could

likely be improved by using a model that incorporates ur-

gency, the best-fitting DDM can explain the effects of the

manipulations in terms of drift rate and starting point effects.

3.2. Whole-brain GLMs

As a second set of control analyses, we fit whole-brain GLMs to

test for the effects of the response hand, errors, potential

payoff cue, and difficulty. Statistical parametric maps (SPMs)

of the main contrasts are shown in Fig. 3; a summary of all

cluster locations and sizes is presented in Supplementary

Table S1. Replicating established findings (Dassonville et al.,

1997; S.-G. Kim, Ashe, Georgopoulos, et al., 1993; S.-G. Kim,

Ashe, Hendrich, et al., 1993), the response hand contrast

shows a strong contralateral BOLD response in primary motor
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(M1) and sensory cortex (S1), as well as in posterior putamen

and thalamus. The expected ipsilateral BOLD response is

present in the superior cerebellum (Lotze et al., 1999).

An error-related BOLD response was present in insula,

anterior cingulate cortex (ACC), and a smaller diffuse cluster

in themidbrain. The insula (Eckert et al., 2009; T. A. Klein et al.,

2013; Ullsperger et al., 2010) and ACC (Botvinick, Braver, Barch,

Carter,& Cohen, 2001; Duncan&Owen, 2000; Paus, 2001; Paus,

Koski, Caramanos, & Westbury, 1998; Spunt, Lieberman,

Cohen, & Eisenberger, 2012) have frequently been associated

with processing of errors and conflicting task demands. A

negative BOLD response to errors was present in putamen

(which could indicate a negative prediction error (McClure,

Berns, & Montague, 2003), although these are more

commonly associated with ventral striatum), posterior

cingulate cortex (speculatively suggesting a lapse of attention

on error trials; Leech & Sharp, 2014), and a diffuse cluster in

left occipital cortex. The latter cluster might be the result of

attention-lapse related activity modulations of the visual

system (Reynolds&Heeger, 2009) and/or involuntary saccades

that impaired task performance (Sylvester, Haynes, & Rees,

2005).

Payoff cues caused an increased BOLD response compared

to neutral cues in the superior parietal cortex, left premotor

cortex, and pre-SMA. Parietal cortex has often been implicated

in evidence accumulation during perceptual decision making

(Gold & Shadlen, 2001; J. N. Kim & Shadlen, 1999; O'Connell,
Dockree, & Kelly, 2012; Shadlen & Newsome, 2001), and the

increased BOLD response could reflect an increased starting

point or drift rate. However, themodel-based analysis showed

no evidence that the BOLD response contrast size covaried

with either the size of the shifts in starting point or drift rate.

The increased pre-SMA and premotor BOLD responses likely

reflect an increased motor readiness in response to a payoff

cue (Cunnington, Bradshaw, & Iansek, 1996; Cunnington,

Windischberger, Deecke, & Moser, 2002; Cunnington,

Windischberger, & Moser, 2005; Pedersen et al., 1998). Con-

trary to expectations, we did not find potential payoff cue-

related BOLD responses in limbic areas such as the orbito-

frontal cortex (c.f. Forstmann, Brown, et al., 2010; Keuken,

Müller-Axt, et al., 2014; Summerfield & Koechlin, 2010).

The difficulty manipulation caused an increased BOLD

response in hard trials compared to easy trials in anterior

insula (over and above the effect of errors), as commonly

found using difficulty manipulations with a variety of

decision-making tasks (for a meta-analysis, see Keuken,

Müller-Axt, et al., 2014). Furthermore, the model-based anal-

ysis shows that in right insula, the size of the BOLD response

difference (hard e easy) covaries with the drift rate difference

ðvhard � veasyÞ, indicating that participants with a larger dif-

ference in drift rates between conditions, also show a larger

difference in right insular BOLD responses. The right insula

specifically has earlier been implicated in drift rate effects in

perceptual decision making (Ho et al., 2009). No evidence was

found for difficulty-related BOLD responses in the dorsolateral

prefrontal cortex (Heekeren et al., 2004).

In sum, the whole-brain results partly led to the expected

effects of the task manipulations, consistent with the litera-

ture. Unfortunately, no difficulty-related BOLD responses in

the dorsolateral prefrontal cortex were found, and the model-
based analysis of the effect of the potential payoff cue showed

no regions in which BOLD response size covaried with the

behavioral effect size. Note that the payoff cue manipulation

is known to be relatively weak compared to cue-based prob-

ability manipulations (Forstmann, Brown, et al., 2010; Mulder

et al., 2012; Voss et al., 2004). Here, we preferred the payoff

manipulation to activate limbic processing. Furthermore, the

two different strategies of incorporating the payoff informa-

tion in decision-making behavior (via a starting point or drift

rate bias) may rely on partially different brain networks,

which could weaken statistical power to find a covariances

with DDM parameters. In the supplementary materials, we

report SPMs of the limbic manipulation with a liberal,

exploratory threshold.

3.3. Deconvolution analyses

As a third control analysis, we aimed to test whether there

was sufficient BOLD sensitivity in the STN, and whether the

shape of the BOLD response was in line with the canonical,

double-gamma HRF typically used in GLM analyses. To do so,

we applied a deconvolution analysis to themean timeseries of

each STN segment. The deconvolution model used Fourier

basis sets with 7 regressors per event type (payoff cue and

RDM stimulus), which allows for a high degree of flexibility in

terms of the potential shapes of the BOLD response that can be

captured, at the cost of increased estimation variance. The fit

deconvolution model was visualized by plotting the percent-

age signal change as a function of time after onset of the

event, as shown in Fig. 4. All STN segments show a BOLD

response to the RDM stimulus, which reach a peak at

approximately .2 percent signal change. The relatively low

size of the responses (in units of percent signal change) can

partly be explained by the use of a very short echo time of

14msec, as percent signal change increases linearly with echo

time (e.g., Kundu et al., 2017). Furthermore, the shape of the

BOLD responseswas in linewith the canonical double-gamma

BOLD response, although we do note between-region vari-

ability in the shape. Specifically, in left segments A and B, and

in right segment C, the size of the post-stimulus undershoot

was larger than commonly assumed in the canonical HRF (De

Hollander et al., 2017; Mileti�c et al., 2020). Between-region

variability in the shape of the HRF has been found before

(Boillat & Van der Zwaag, 2019; Gonzalez-Castillo et al., 2012;

Handwerker, Ollinger, & D'Esposito, 2004; Miezin, Maccotta,

Ollinger, Petersen, & Buckner, 2000). Furthermore, it appears

that the peak of the BOLD response occurs roughly 4 sec after

RDM stimulus onset, thus earlier than the canonical 6 sec.

However, some caution must be taken in interpreting this

difference, since the TR of 3 sec is relatively high, which may

limit our ability to determine the exact time at which the

response peaks. Contrary to the RDM stimulus, the potential

payoff cue seems to evoke no typical BOLD response in most

segments (in line with Keuken et al., 2015), except for a po-

tential trend towards a BOLD response in left STN ventrome-

dial segment A.

The flexibility of the deconvolution models comes at the

cost of an increased estimation variance, and therefore large

confidence intervals and decreased sensitivity. Because the

shapes of the deconvolved BOLD responses approximate the
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Fig. 4 e Deconvolution of BOLD-responses to the potential payoff cue (blue) and RDM stimulus (orange) using Fourier basis

sets. Shaded areas correspond to 95% confidence intervals. For the deconvolution results using the STN segments based on

the atlas provided by (Accolla et al., 2014), see Figure S4.
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canonical HRF, we subsequently used the canonical HRF to

model the BOLD responses in the ROI analyses detailed below.

This led to much smaller confidence intervals, and thereby

larger sensitivity, than the deconvolution analyses (see also

Figure S3).

3.4. ROI-wise GLMs

Having confirmed that fMRI signal quality was sufficient to

detect BOLD responses in the individual segments of the STN,

we fit four GLMs to test our main hypotheses. Fig. 5 summa-

rizes all four GLMs’ BOLD response estimates. These BOLD

response estimates were used as dependent variables. In

Table 1, we present per-segment, within-subject t-tests for all

contrasts of interest. Using linear MEMs, we then tested for
Fig. 5 e Parameter estimates from four GLMs fit to the timeserie

confidence intervals. For the GLM results using the STN segmen

Figure S5.
differences between conditions and differences between

segments. Below, we report the results using the PCA-based

partitioning of the STN; in the Supplementary Materials, we

report the results using the partitioning provided by Accolla

et al. (2014).

First, we used GLM1 to test whether potential payoff cue

valence affected BOLD responses, and whether there were

between-segment differences in these BOLD responses. A

linear MEM showed no evidence for an effect of potential

payoff cue type (payoff vs neutral; F(1, 160) ¼ 2.766, p ¼ .098),

segment (A, B or C; F(2, 160) ¼ .434, p ¼ .648), nor, critically, of

their interaction (F(2, 160) ¼ .073, p ¼ .929) on the BOLD

response size. Bayesian model comparison furthermore

preferred an intercept-only model over all seven possible

alternative models that included potential payoff cue type,
s of each subregion within the STN. Error bars indicate 95%

ts based on the atlas provided by (Accolla et al., 2014), see

https://doi.org/10.1016/j.cortex.2022.06.014
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Table 1 e Results of per-subregion within-subject frequentist and Bayesian t-tests. Frequentist t-tests had 32 degrees of
freedom, and none were significant after correcting for the false discovery rate (q < .05). Bayes factors are presented as BF01,
where values greater than 1 indicate evidence against the presence of a difference, and values lower than 1 evidence in favor
of a difference. For the within-subject t-tests based on the Accolla et al. (2014) segments, see Supplementary Table S2.

Hemisphere Segment GLM1 GLM2 GLM3 GLM4

Payoff cue
valence

(payoff e neutral)

Difficulty
(hard e easy)

Payoff cue
direction

(left e right)

Difficulty
(hard (correct) e
easy (correct))

Response direction
(left e right)

t BF01 t BF01 t BF01 t BF01 t BF01

Left A .45 4.90 �.48 4.82 �.01 5.37 .81 3.96 �1.68 1.51

B .98 3.46 .45 4.89 .86 3.83 �.27 5.19 �1.34 2.38

C 1.04 3.27 �.70 4.28 �.93 3.62 .04 5.37 �.02 5.37

Right A 1.42 2.14 �.25 5.22 �.81 3.96 1.00 3.38 .44 4.92

B .78 4.04 �.33 5.10 �.66 4.38 .30 5.16 .48 4.83

C 1.75 1.36 �.73 4.18 .13 5.33 1.86 1.15 �.70 4.27
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STN segment, and/or their interaction predictors. Specifically,

there was substantial evidence against a model with potential

payoff cue type as predictor (BF01 ¼ 4.368), strong evidence

against amodel with STN segment as predictor (BF01¼ 17.151),

strong evidence against a model with their interaction as

predictor (BF01 ¼ 10.637), and even stronger evidence against

more complex MEMs (all BF01 > 46). Hence, the BOLD re-

sponses to payoff and neutral cues were the same in all STN

segments.

Second, we used GLM1 to test whether RDM stimulus dif-

ficulty affected STN BOLD responses, using the same analysis

but including easy and hard stimuli as event types. A linear

mixed effectsmodel also indicated no evidence for an effect of

difficulty (F(1, 160) ¼ .281, p ¼ .597), nor of STN segment (F(2,

160) ¼ .068, p ¼ .934), or their interaction (F(2, 160) ¼ .147,

p ¼ .86) on BOLD response size. Bayesian model comparison

again favored an intercept-only model. There was substantial

evidence against an influence of difficulty (BF01 ¼ 6.126),

strong evidence against a difference between segments

(BF01 ¼ 18.769), and against their interaction (BF01 ¼ 10.313).

There was even stronger evidence against the more complex

models including multiple predictors (all BF01 > 65). Thus, the

BOLD responses to hard and easy stimuli were the same in all

STN segments.

Third, we used GLM2 to test for an effect of the potential

payoff cue direction on BOLD response sizes. Here, a linear

MEM predicting the BOLD response suggested no effect of

potential payoff cue laterality (ipsilateral vs contralateral

relative to the STN hemisphere; F(1, 160) ¼ .172, p ¼ .679), no

effect of STN segment (F(2, 160) ¼ .774, p ¼ .463), nor an

interaction (F(2, 160) ¼ .617, p ¼ .541). Bayesian model com-

parison again preferred an intercept-only model, with sub-

stantial evidence against a model including potential payoff

cue laterality as predictor (BF01 ¼ 6.325), strong evidence

against a model including STN segment (BF01 ¼ 15.94), sub-

stantial evidence against amodel with an interaction between

subregion and laterality (BF01 ¼ 9.431), and stronger evidence

against all more complex models (all BF01 > 59). Thus, we also

found that all STN segments responded equally to contralat-

eral and ipsilateral potential payoff cues.

Fourth, we used GLM3 to test whether difficulty affects the

STN when only the trials are considered in which the
participants gave correct responses, to de-confound the effect

of error-related processing. Hence, the MEM with difficulty

(hard, correct vs easy, correct), STN segments, and their

interaction as predictors, showed no effect of difficulty (F(1,

160) ¼ .876, p ¼ .351), of STN segment (F(2, 160) ¼ 1.732,

p ¼ .180), nor their interaction (F(2, 160) ¼ .241, p ¼ .786).

Bayesian model comparison favored a null model again, with

substantial evidence against an effect of difficulty

(BF01 ¼ 5.363), substantial evidence against an effect of STN

segment (BF01 ¼ 9.603), substantial evidence against an

interaction effect (BF01 ¼ 9.92), and strong to decisive evidence

against all more complex models including multiple pre-

dictors (all BF01 > 53). Thus, also when considering only the

trials with correct responses, all STN segments responded

equally to easy and hard trials.

Fifth, we tested formotor lateralization effects using GLM4.

Here, we constructed a linear mixed effects model predicting

the BOLD response size using the response direction (contra-

lateral vs ipsilateral) and subregion. Again, we found no main

effects of response direction (F(1, 358)¼ .049, p¼ .835), nomain

effect of subregion (F(2, 358) ¼ 2.546, p ¼ .08), nor an interac-

tion (F(2, 358) ¼ .042, p ¼ .959). Bayesian model comparisons

favored a null model again, with substantial evidence against

a model including a main effect of response direction

(BF01 ¼ 8.887), strong evidence against a model including a

main effect of subregion (BF01 ¼ 11.177), strong evidence

against amodel including their interaction (BF01¼ 18.892), and

decisive evidence against more complex models including

multiple predictors (all BF01 > 102). Note that, althoughwe find

no lateralized motor response signals, our results from GLM4

do not preclude the STN from being involved in motor prep-

aration/execution processes bilaterally. In our experimental

paradigm, subjects had to respond on all trials and therefore

we cannot dissociate bilateral motor processing signals from

those related to stimulus processing per se.

To summarize, in this section, frequentist tests suggested

no evidence for effects of any of our manipulations (difficulty,

potential payoff cue valence, motor response direction) on the

STN BOLD responses, and no evidence for differences between

the segments or for interactions. The Bayesian analyses

consistently showed substantial to strong evidence against

such effects.
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3.5. Interindividual differences

Next, we took an interindividual differences approach to

analyze the data, reasoning that the size of the behavioral

differences should covary with the size of the BOLD response

differences in the STN. Specifically, we testedwhether the size

of the shift in the DDM's starting points and drift rates due to a

potential payoff cue was correlated to the difference in BOLD

responses between payoff and neutral cues (obtained from

GLM1). Furthermore, we tested whether the difference be-

tween the DDM's drift rates (hard e easy) was correlated with

the corresponding difference in BOLD responses (also ob-

tained from GLM1). All correlations, including their co-

efficients and corresponding Bayes factors, are shown in Fig. 6.

Frequentist tests showed that none of the correlation co-

efficients was significant, and the Bayes factors indicated

anecdotal evidence against correlations. In summary, there

was no evidence for any interindividual correlations between

the size of the behavioral effect and the size of the STN's BOLD

responses in all subregions.
4. Discussion

A prominent hypothesis on the organization of the STN

holds that it contains three functionally distinct subregions,

respectively specialized in cognitive, limbic, and motor

processing (Temel, Blokland, et al., 2005). Here, we tested

this hypothesis in healthy volunteers using ultra-high field

7 T BOLD-fMRI with protocols optimized to study anatomy

and function of STN (De Hollander et al., 2015, 2017; Mileti�c

et al., 2020; Mulder, Keuken, Bazin, Alkemade, &

Forstmann, 2019), manual delineations to maximize

anatomical accuracy, and a well-understood task with ma-

nipulations hypothesized to elicit cognitive, limbic, and

motor effects on behavior.

Specifically, we used a random dot motion decision-

making task with a payoff bias and a difficulty manipula-

tion, and we furthermore analyzed the different response

directions. Control analyses confirmed that the task manip-

ulations elicited the expected behavioral effects. Further-

more, whole-brain analyses of the functional neuroimaging

data directly replicated well-established findings on the ef-

fect of motor lateralization. The difficulty manipulation

caused differential BOLD responses in right anterior insula,

and the size of the BOLD response difference covaried with

the size of the behavioral difficulty effect. Drift rate effects on

anterior insula have frequently been reported in decision-

making tasks with difficulty manipulations (Keuken,

Müller-Axt, et al., 2014). The payoff cues resulted in

increased BOLD responses in parietal cortex, which is

commonly implicated in evidence accumulation in percep-

tual decision making, but the presence of between-subject

strategy differences limited our ability to directly compare

our results with the (relatively scarce) literature on this

manipulation. Deconvolution analyses confirmed that we

were able to detect BOLD responses in all STN segments.

Despite the promising results of our control analyses, we

found no evidence for functionally specialized subregions in

the STN. More strongly, Bayesian analyses repeatedly
suggested substantial to strong evidence against functionally

distinct subregions in the STN.

Our results seem contradictory with studies that suggests

the presence of subregions (for recent overviews, Emmi,

Antonini, Macchi, Porzionato, & De Caro, 2020; van Wijk,

Alkemade, & Forstmann, 2020). The tripartite model was

developed partly based on anatomical anterograde tracing

studies (Haynes & Haber, 2013; Joel & Weiner, 1997; Parent &

Hazrati, 1995), which showed that the termination sites in

the STN from various cortical regions are organized along the

STN's dorsolateraleventromedial axis. ‘Motor’ cortical areas

(M1, SMA) predominantly terminate in the dorsolateral part,

‘limbic’ cortical areas (e.g., vmPFC/OFC) terminate in the

ventromedial part, and ‘cognitive’ areas (ACC and dPFC) in

between, although the projections are highly overlapping

(Alkemade, 2013; Haynes &Haber, 2013; Lambert et al., 2015).

Other studies that are considered to support a three-partite

functional organization include LFP recordings from DBS

electrodes in PD patients. Various studies report the peak

amplitude of beta oscillations are near the dorsolateral border

(de Solages, Hill, Yu, Henderson,& Bronte-Stewart, 2011; Kühn

et al., 2005; Seifried et al., 2012; Trottenberg, Kupsch,

Schneider, Brown, & Kühn, 2007; Weinberger et al., 2006;

Zaidel, Spivak, Grieb, Bergman,& Israel, 2010), and alpha peak

amplitude more towards the ventromedial border (Horn,

Neumann, Degen, Schneider, & Kühn, 2017). Yet, there is

substantial variability in peak site locations, and because DBS

surgery targets the dorsolateral part of the STN, the ventro-

medial tip is inherently undersampled, complicating the

interpretation of these findings in terms of the functional or-

ganization of the STN (van Wijk et al., 2020).

It is possible that the STN is indeed specialized in func-

tionally distinct subregions, but that we were unable to find

these due to experimental design choices. One important

consideration is how we operationalized the hypothesized

subregions of the STN into three segments. Here, we used a

PCA on the individual STN masks to identify the

ventromedialedorsolateral axis, along which we divided the

STNs in three segments of equal volume. Some other studies

suggest more complex shapes of subregions (e.g., Ewert et al.,

2018; Horn et al., 2017; but see Lambert et al., 2012), but there is

considerable variability in the reported shapes and even

number of hypothesized subdivisions (for review, see Keuken

et al., 2012). Other work suggests the STN is organized along a

gradient of changeswith no clear boundaries (Alkemade et al.,

2019; De Hollander et al., 2014). Some of the mismatches in

neuroanatomical data that speaks in favor of two versus three

subdivisions might be due to the fact that although the indi-

rect cortico-pallido-subthalamic projections show a motor/

associative/limbic gradient (e.g., Haber, Lynd-Balta, & Mitch-

ell, 1993; Parent&Hazrati, 1995; Shink, Bevan, Bolam,& Smith,

1996), the hyperdirect cortico-subthalamic seems to predom-

inantly involve only (pre)motor and limbic cortical areas

(Temiz et al., 2020; Coenen et al., 2022; but see Haynes &

Haber, 2013). What the functional significance of these

different indirect versus hyperdirect projection patterns

might be in the context of speeded perceptual decision-

making is, however, hard to predict and both models would

predict at least some functional specialization across STN

subregions.
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Fig. 6 e Interindividual correlations between BOLD-response contrasts and parameter estimate contrasts. Both the BOLD-

response contrasts (y-axis) and the parameter estimate contrasts (x-axis) are z-scored. Colors indicate subregions A (blue), B

(green), and C (red). Shaded areas correspond to 67% confidence intervals. Pearson's correlation coefficient r is included in

each panel, with the corresponding Bayes factors. For the correlations using the STN segments based on the atlas provided

by (Accolla et al., 2014), see Figure S6.
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The PCA-based approach provides a principled way to

formalize the hypothesis that the ventromedialedorsolateral

axis is the most important axis of organization. We also

repeated our ROI analyses based on the subdivision proposed

by Accolla et al. (2014), which was based on diffusion MRI.

These masks delineate more complex-shaped subdivisions

with unequal volumes (see also Figure S1), but the corre-

sponding analyses lead to the same conclusions.
An alternative analysis strategy could have been to use

purely voxel-based analyses and define three subdivision ROIs

in a more data-driven manner. However, preliminary analyses

clearly showed that the signal-to-noise ratio of the BOLD signal

at a field strength of 7 T is not reliable enough to elucidate

activation patterns in single voxels within single individuals.

Therefore, to improve experimental power and to refrain from

overly exploratory analysis approaches, we opted to use the

https://doi.org/10.1016/j.cortex.2022.06.014
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ROI-based approach employed here and advocated elsewhere

(DeHollander et al., 2015, see also 2017).Wewould like to stress

that although our analyses used two sets of three predefined

ROIs, this did not preclude us from finding a topological orga-

nization, evenwhen the true underlying organization would be

of a more gradual nature. Specifically, if there is a gradual

change along the dorsolateraleventromedial axis of the STN

that is relevant to the task and manipulations used in the

present study, then we would still expect to find different

amounts of task-related activity in the three segments, and

especially between the ventromedial ‘limbic’ and dorsolateral

‘motor’ segmentwhich form the opposite ends of themain axis

of organization. Thus, our ROI-based approach was more of a

practical data analysis choice rather than a theoretical

commitment and we believe our results also speak against a

somewhat ‘gradual’ tripartite functional organization of the

STN, at least with respect to the current task used.

A second design consideration is our operationalization of

the cognitive, limbic, and motor domains in the experimental

paradigm.We used the random-dotmotion task since the STN

is often thought to play a central role in speeded (perceptual)

decision making (Bogacz, 2007; Bogacz & Gurney, 2007; Frank,

2006; Frank et al., 2015; Green et al., 2013; Keuken et al., 2015;

Keuken, Van Maanen, Boswijk, Forstmann, & Steyvers, 2018;

Mink, 1996). The operationalizations of the cognitive domain

bymeans of a difficultymanipulation, of the limbic domain by

means of the potential reward, and the motor domain using

the response hands, were based on earlier studies using

similar manipulations (Mulder et al., 2014). The difficulty

manipulation has previously been shown to affect ‘cognitive’

brain areas such as the dorsolateral prefrontal cortex

(Heekeren et al., 2004; Kaiser et al., 2007). Earlier work also

suggested that STN activity reflects a ‘conflict’ or ‘normaliza-

tion’ signal (e.g., Bogacz & Gurney, 2007; Frank et al., 2015;

Keuken et al., 2015) that should be inversely proportional to

choice difficulty. The detection of conflicts allows the STN to

increase response thresholds (e.g., Bogacz & Gurney, 2007;

Frank et al., 2015; Herz, Zavala, Bogacz, & Brown, 2016) to

prevent premature, inappropriate responses. This proposed

inhibitory role of the STN extends to other cognitive tasks (Soh

&Wessel, 2021; Wessel et al., 2016), and could be facilitated by

the short neural pathways between the visual system and the

STN (Coizet et al., 2009) which could allow the STN to quickly

detect whether a stimulus is sufficiently clear to allow for a

fast response, or whether thresholds should be increased.

The potential reward manipulation has been shown to

affect ‘limbic’ brain areas such as the orbitofrontal cortex

(Forstmann, Anwander, et al., 2010; Summerfield & Koechlin,

2010). Unfortunately, we were not able to replicate these

findings. We found significant task-related BOLD responses in

the STN, but found no differences in the BOLD response be-

tween hard and easy trials, between payoff and neutral cues,

or between left and right responses. It is possible that the

tripartitemodel is correct, but that ourmanipulations (despite

being tailored to do so) failed to tap into the three distinct

cortico-basal ganglia networks, hence failing to elicit specific

cognitive, limbic, and motor functioning of the STN. If so,

theorists of STN functioning that are proponents of the

tripartite model should strive to extend this model with spe-

cific attributions of cognitive, limbic, andmotor functions and
how they would be involved in standard experimental para-

digms, as such that the model remains testable. Then, future

work can assess whether other experimental designs can

elicit BOLD responses that support a tripartite model. Com-

plementary, more data-driven approaches might also be used

to leverage functional (in addition to structural) data. For

example, unsupervised machine learning techniques that can

situate multivariate activity patterns across different gradual

axes of connectivity (e.g., Haak,Marquand,& Beckmann, 2018;

Huntenburg, Steele, & Bazin, 2018; Margulies et al., 2016)

might be used to subdivide the STN using functional MRI data

(in addition to structural connectivity data). Preferably,

resulting connectivity patterns with respect to cerebral cortex

should in turn be related to cognition via automated meta-

analysis techniques (e.g., Neurosynth; Yarkoni, Poldrack,

Nichols, Van Essen, & Wager, 2011).

Our study is the first to test for functional specialization of

STN subregions using ultra-high field 7 T BOLD-fMRI, which,

contrary to LFP recordings, allowed for testing healthy volun-

teers and sample across the entire STN. However, the spatial

resolution of the BOLD response can be lower than the nominal

scanning resolution due to draining veins that cause BOLD re-

sponses in regions downstream from the activated neural tis-

sue (R. Turner, 2002; Uǧurbil, Toth, & Kim, 2003). One study at

7 T estimates the full-width-half-maximum of the BOLD point-

spread function in cortical gray matter to be in the range of

1.5e2 mm (Shmuel, Yacoub, Chaimow, Logothetis, & U�gurbil,

2007). This is a known issue for laminar fMRI, where non-

BOLD fMRI methods (Huber et al., 2014, 2018, 2015; Huber,

Uluda�g, & M€oller, 2019) are more frequently used to disen-

tangle neural activity from the different cortical layers using

sub-millimeter scanning protocols. However, the estimated

point spread function is still smaller than the length of the STN

along the ventromedialedorsolateral axis (approximately

1 cm). Another consideration here is the use of partial Fourier

(required to obtain a TE of 14 msec), which decreases the

effective resolution in the phase encoding direction (anterior-

posterior) in our functional data. The STN, however, extends

across multiple slices (see Fig. 2), which increases the number

of independent samples from the different segments.

Furthermore, compared to lower field strengths, 7 T fMRI ap-

pears to be less sensitive to macrovasculature, since the T2* of

macrovasculature is relatively much lower compared to the

microvasculature at 7 T (Markuerkiaga, Barth, & Norris, 2016;

Uluda�g, Müller-Bierl, & U�gurbil, 2009). In future work, it will be

of utmost importance to investigate the neurovascular

coupling in and surrounding the STN inorder to understand the

limitations of the spatial specificity of the BOLD response in

such subcortical regions.

Another limitation of using BOLD-fMRI to study the STN is

the gradient of increasing iron concentrations towards the

ventromedial tip of the structure (De Hollander et al., 2014;

Stüber et al., 2014). The presence of iron in brain tissue de-

creases the transversal relaxation time T2*, which in turn af-

fects the size of the BOLD response (under a constant echo

time): Under the assumption of mono-exponential signal

decay, signal-to-noise ratios decrease exponentially with echo

time, but BOLD contrast increases linearly (e.g., Kundu, Inati,

Evans, Luh, & Bandettini, 2012). Hence, voxels with relatively

low T2* values are expected to have a relatively large BOLD
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response (e.g., in percent signal change) and relatively large

amount of signal noise. Optimal BOLD contrast-to-noise ratios

(and therefore, highest first-level t-values) are reached when

the echo time is equal to the T2* of the voxel (Posse et al.,

1999). Therefore, it can be expected that both the BOLD

contrast estimates as well as the t-values vary along the

ventromedialedorsolateral axis of the STN. Future studies

supporting the tripartite model using BOLD-fMRI should

therefore ensure that the T2* variability within the STN did

not influence the results.

In addition to spatial limitations, the temporal resolution of

functional MRI also remains rather sluggish compared to the

millisecond timescale at which speeded decision-making un-

folds neurally (Gold & Shadlen, 2007; Yarkoni, Barch, Gray,

Conturo, & Braver, 2009). Here, we have tried to circumvent

this issue using an experimental design that aims to tear apart

different aspects of decision-making throughout time

(Forstmann et al., 2011). An alternative, future approach might

be to sample neural activity at a higher temporal resolution

using either invasive electrophysiological recordings (van Wijk

et al., 2017) or highly accelerated functional MRI at a small

volume-of-interest (e.g., using line-scanning fMRI), which can

now reach a time scale of dozens of milliseconds (Albers,

Schmid, Wachsmuth, & Faber, 2018; Ekman, Kok, & De Lange,

2017; Raimondo et al., 2021; Setsompop, Feinberg, & Polimeni,

2016; Yu, Qian, Chen, Dodd, & Koretsky, 2014). However, the

electrophysiological approach suffers from biased sampling,

because invasive recordings can only be made in patients with

a clinical need for DBS, and neurosurgeons generally target the

electrodes dorsolaterally from the STN (van Wijk et al., 2020).

The fast fMRI approach will suffer particularly high SNR hits

due to the necessary acceleration and the fact that the STN lies

near the center of the brain (De Hollander et al., 2017; Mileti�c

et al., 2020). Moreover, some temporal blurring will always

occur due to neurovascular coupling (but see for example

Ekman et al., 2017; Siero et al., 2013). However, future meth-

odological developments like larger electrode arrays and opti-

mized receiver coils might overcome these limitations.

In sum, we tested for the presence of three functional

subdivisions in the STN using ultra-high field 7 T BOLD-fMRI

in healthy volunteers with a task paradigm. The results did

not support functional subdivisions, and more generally

show no BOLD responses in the STN related to task difficulty,

payoff cues, or motor response direction. It is important for

future work that the tripartite model is further augmented to

clarify which experimental paradigms and manipulations

are expected to lead to differential activity between sub-

regions, such that these predictions can be empirically

tested.
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