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a b s t r a c t 

Ultra-high field MRI can functionally image the cerebral cortex of human subjects at the submillimeter scale of cortical columns and laminae. Here, we investigate 

both in concert, by imaging ocular dominance columns (ODCs) in primary visual cortex (V1) across different cortical depths. We ensured that putative ODC patterns 

in V1 (a) are stable across runs, sessions, and scanners located in different continents, (b) have a width (~1.3 mm) expected from post-mortem and animal work and 

(c) are absent at the retinotopic location of the blind spot. We then dissociated the effects of bottom-up thalamo-cortical input and attentional feedback processes 

on activity in V1 across cortical depth. Importantly, the separation of bottom-up information flows into ODCs allowed us to validly compare attentional conditions 

while keeping the stimulus identical throughout the experiment. We find that, when correcting for draining vein effects and using both model-based and model-free 

approaches, the effect of monocular stimulation is largest at deep and middle cortical depths. Conversely, spatial attention influences BOLD activity exclusively near 

the pial surface. Our findings show that simultaneous interrogation of columnar and laminar dimensions of the cortical fold can dissociate thalamocortical inputs 

from top-down processing, and allow the investigation of their interactions without any stimulus manipulation. 
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. Introduction 

Ultra-high field functional MRI (UHF-fMRI, at field strengths of

 Tesla or more) is transforming the field of human neuroimaging

 Marques and Norris, 2018 ; Trattnig et al., 2018 ; van der Zwaag et al.,

016 ). By increasing signal-to-noise ratio (SNR) and spatial resolu-

ion, UHF-fMRI allows researchers to non-invasively study cortical func-

ional organization at the mesoscopic scale of cortical columns and

ayers in healthy humans ( De Martino et al., 2018 ; Dumoulin et al.,

018 ). Perhaps the most well-known form of cortical organization at

he mesoscopic scale is columnar: ocular dominance columns (ODCs)

re patches of cortex that are predominantly sensitive to input from

nly one of the two eyes, forming columns perpendicular to the

urface of primary visual cortex, V1 ( Adams and Horton, 2009 ;,

dams et al., 2007 ; Dougherty et al., 2019 ; Hubel and Wiesel, 1969 ;

ootell et al., 1988 ). In addition, models of cortical microcircuits con-

end that the organization orthogonal to that of cortical columns, along

ortical depth, separates input-driven and feedback activity in pri-

ary sensory regions ( Bastos et al., 2012 ; De Martino et al., 2018 ;

uehn and Sereno, 2018 ; Rockland and Pandya, 1979 ; Self et al.,

019 ; Stephan et al., 2019 ). Specifically, thalamocortical "feedfor-

ard" inputs are believed to mostly reside at the "middle", granu-

ar layer ( Bastos et al., 2012 ; Stephan et al., 2019 ) and, "deep", in-
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ragranular layers ( Constantinople and Bruno, 2013 ). Feedback pro-

esses, like perceptual predictions and attention, however, are believed

o mostly signal into supragranular and infragranular layers ( Rockland

nd Pandya, 1979 ; Self et al., 2019 ). Therefore, combined laminar-

olumnar UHF-fMRI could dissociate BOLD activity in V1 due to tha-

amocortical input (e.g., by monocular stimulation of the preferred eye

f a given ODC) from activity due to higher order processes (e.g, by

anipulating attention) in the same cortical columns (see Fig. 1 and

chneider et al., 2019 ). Dissociating feed-forward and feedback pro-

esses that deal with ocularity information provides a potential oppor-

unity to empirically validate the wiring of cortical microcircuit mod-

ls non-invasively in healthy human subjects, and elucidate the un-

erlying mechanisms of a range of phenomena such as binocular ri-

alry ( Brascamp et al., 2018 ; Wheatstone, 1838 ) and stereoscopic vision

 Goncalves and Welchman, 2017 ). 

Earlier studies that aimed to show the laminar profile of feedforward

halamocortical inputs using UHF-fMRI did so by manipulating stimu-

us features, such as the presence of a stimulus ( Koopmans et al., 2010 )

r stimulus contrast ( Lawrence et al., 2019 ). Arguably, such stimulus

anipulations could still induce higher-order feedback processes, in ad-

ition to feedforward input, because the appearance of such stimuli are

nherently different and can thereby change feedback processes into V1

s well ( Petro et al., 2014 ). Here, we leverage the preferred ocularity of
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Supragranular
V1

LGN

Granular

Infragranular

V1

Top-down attentional
influence

left eye right eye

Fig. 1. Schematic illustration of laminae and columns in V1. Visual informa- 

tion enters the visual system via the cornea of the left and right eye (bottom), 

and then, through the optical nerve reaches primary visual (V1) via the lateral 

geniculate nucleus (LGN; middle) in the thalamus. The signal then predomi- 

nantly projects into the granular, as well as the infragranular layer in V1. The 

ocularity of the signal is preserved along so-called "ocular dominance columns" 

of approximately 1 mm wide. Feedback processes from higher-order cortical 

regions project largely into supragranular and infragranular layers. 
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apped ODCs to infer whether monocular stimulation in the left or right

ye is increasing thalamocortical input for a given patch of cortex - with-

ut the need to resort to stimulus manipulations. We do so by using an

sotropic voxel size and 3D (rather than 2D) computational modelling

f the cortical sheet, which allow us to exploit functional-anatomical

appings both along and across the cortical sheet (see also earlier work

y De Martino et al., 2015 ; Kemper et al., 2018 ; Schneider et al., 2019 ;

immermann et al., 2011 ). 

Concretely, subjects were presented with an identical stimulus frame

nd fixation mark to both eyes. However, within the stimulus frame, a

otating and flickering checkerboard was presented to only one eye at

 time. This allowed us to compare strong input to the left versus the

ight eye for the retinotopic area corresponding to the rotating checker-

oard. In addition to this input-manipulation, we independently ma-

ipulated the relevance of monocular or binocular information for our

articipants: participants were asked to either report on color changes

f the binocularly presented fixation mark, or changes in the direction

f the monocularly presented rotating-checkerboard stimulus. Crucially,

isual stimulation was identical across these two attentional conditions.

he only difference was the task instruction to the subject before the

ask began. 

We used 7T gradient-echo functional MRI (GRE-fMRI) and isotropic

oxels at a very high resolution ( Fig 2 A, 0.7 mm isotropic; 0.343 mm 

3 ;

 Petridou et al., 2013 )) to sample activation patterns within the cortical

ibbon at different cortical depths ( Bazin et al., 2014 ; Dale et al., 1999 ;

ischl et al., 1999 ; Polimeni et al., 2018 ). A well-known disadvantage of

RE-fMRI compared to alternative, more complex techniques exploit-

ng T2- (GRASE; De Martino et al., 2013 ; Yacoub et al., 2007 ), CBV-
2 
VASO; Huber et al., 2015 ) or SFFP-contrast (bSSFP Lee et al., 2008 ;

iu et al., 2020 ; Miller, 2012 ), is that GRE-fMRI is more sensitive to

raining veins effect. Specifically, due to the fact that blood gets drained

utwards from cerebral cortex, GRE BOLD-effects tend to accumulate

owards the pial surface, potentially clouding laminar-specific activity

 Heinzle et al., 2016 ; Koopmans et al., 2010 ; Markuerkiaga et al., 2016 ;,

iero et al., 2011 ). However, we still chose to use GRE-fMRI because of

ts important advantages: the signal-to-noise ratio of GRE at submillime-

er scale is superior to alternative techniques (2–8 times higher z-values

or the same amount of data; Haenelt et al., 2020 ) and GRE-fMRI is

uch less plagued by SAR-constraints compared to GRASE and VASO

echniques. The reduced SAR-constraints make it feasible to scan with

igher temporal resolution, which would be preferable in future, more

ognitive-oriented paradigms like binocular rivalry. Moreover, recent

odelling efforts have made it possible to infer laminar-specific activ-

ty in GRE-fMRI with some reasonable assumptions about how deoxy-

enated blood gets drained to the pial surface ( Havlicek and Uluda ğ,

020 ; Heinzle et al., 2016 ; Markuerkiaga et al., 2016 ; Marquardt et al.,

018 ; Merola and Weiskopf, 2018 ; Puckett et al., 2016 ). These meth-

ds seem to be relatively robust to the exact parametric assumptions

sed ( Marquardt et al., 2020 ; Marquardt et al., 2018 ). Indeed, GRE-

MRI is still the main workhorse in the large majority of recent ap-

lied laminar UHF-fMRI literature ( Kok et al., 2016 ; Kasper et al., 2019 ;

awrence et al., 2018 ; Marquardt et al., 2020 , 2018 ; Schneider et al.,

019 ; Zaretskaya et al., 2020 ). 

Our approach allowed us to quantify ODC patterns across cortical

epth, and investigate how these patterns change as a function of tha-

amocortical input and stimulus relevance (attentional state). By using

sotropic voxels, we could also reduce the number of voxels that over-

ap with draining vasculature near the pial surface, thereby increasing

he effective resolution on the cortical surface ( Kay et al., 2019 ). Fi-

ally, combining ODC measurements with population receptive field

stimates at all locations allowed us to relate the ocular dominance col-

mn patterns to their place in the retinotopic visual field ( Adams and

orton, 2009 ; Dumoulin and Wandell, 2008 ). 

In the following, we first establish the consistency and robustness

f ODC patterns and replicate some key characteristics of ODCs. Then,

e focus on the effects of (a) monocular stimulation of the preferred

ye versus the non-preferred eye of an ODC and (b) the effect of at-

ending a stimulus that is presented monocularly versus a stimulus that

s presented binocularly. The central question of this study was how

hese effects manifest differently across cortical depth. We hypothe-

ized that the effect of monocular stimulation should be most preva-

ent at the middle cortical depth, where the granular layers reside

 Bastos et al., 2012 ; De Martino et al., 2018 ; Kuehn and Sereno, 2018 ;

ockland and Pandya, 1979 ; Self et al., 2019 ; Stephan et al., 2019 , but

ee Constantinople and Bruno, 2013 ), whereas the effect of attention

hould be most prevalent at outer cortical depth, where the projections

riginating from higher-order visual areas are located ( Bastos et al.,

012 ; De Martino et al., 2018 ; Kuehn and Sereno, 2018 ; Rockland and

andya, 1979 ; Self et al., 2019 ; Stephan et al., 2019 ; Lawrence et al.,

019 ). 

Finally, we were also interested to see if there was an interaction

etween the effect of monocular stimulation of the preferred eye and

ttentional state. In other words: is the effect of attention modulated

y the stimulation of the preferred versus non-preferred eye? We spec-

lated that humans might be able to suppress the thalamocortical input

nto V1 representing information that is not relevant to the task at hand

 Ling et al., 2015 ). If this would be the case, we would expect the effect

f attention to be larger in ODCs where the preferred eye is stimulated

s compared to ODCs where the non-preferred eye is stimulated. 

In the following, we report robust V1 ODC patterns at all corti-

al depths. Laminar deconvolution and decoding analyses confirm that

cular-dominance information is indeed most robust at middle cor-

ical depth. The behavioral relevance of the monocular stimulus in-

uced a higher BOLD response but only at outer cortical depth, con-
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Fig. 2. PRF and ocularity maps in V1 A) func- 

tional MRI data was collected at 7 Tesla with 

isotropic resolution of 0.7 mm and occipital sur- 

face coils with a restricted field-of-view, but op- 

timized signal from the calcarine sulcus. Over- 

laid contour profile shows white (green/white 

lines) and gray matter segmentations (red lines) 

created by Freesurfer at 0.64 mm resolution, 

based on the mean T1-weighted UNI image of 

a MP2RAGE and MP2RAGE-ME-sequence. The 

purple/orange image is the mean EPI image 

of a run registered to the anatomical data us- 

ing boundary-based registration and illustrates 

the quality of the registration, as well as the 

field-of-view. B) A standard Population Receptive 

Field (PRF) mapping paradigm was presented to 

the subjects for 3 runs of approx 5 min. In this 

paradigm, a flickering bar consisting of many ga- 

bor patches was moved across the central aper- 

ture in 4 cardinal and 4 oblique directions. The 

projection screen was approximately 12–15 cen- 

timeters from the subject’s eyes, which led to 

an ocular field-of-view of approximately 22–

28 degrees-of-visual-angle. C) The PRF mapping 

paradigm yielded individual retinotopic field maps 

in and around the calcarine sulcus. These maps 

were used for a very fine-grained delineation 

of the V1/V2-border. Here, we show the retino- 

topic maps of three representative subjects. D) 

An ocular dominance mapping paradigm with both 

monocular and binocular stimulus elements was 

presented to each subject for 8-10 runs. Before half 

of the runs, subjects were instructed to report 

changes in the color of the binocularly-presented fixation dot; before the other half of the runs, subjects were instructed to report the rotating direction of the 

checkerboard. E) The ocular dominance mapping paradigm yielded a contrast map (left > right eye stimulation) . Note how the z-values change between large positive and 

negative values across the cortical surface. The polar angle maps, as well as the ocularity maps can be visually inspected interactively at http://aeneas.labs.vu.nl/odc/ 
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istent with the standard model that cortico-cortical feedback projec-

ions largely reside in the outer layers. Lastly, there was no significant

nteraction between these two effects, suggesting that, in our task, tha-

amocortical input is not modulated by attention in an ocular-specific

anner. 

. Results 

.1. Univariate contrasts on the surface 

We first used population receptive field mapping (PRF;

umoulin and Wandell, 2008 ) to delineate V1 on the cortical sur-

ace of individual subjects. Fig. 2 C illustrates the retinotopic maps

nd V1/V2 segmentations of three representative subjects. Fig. 2 E

hows the z-statistics of the contrast ‘left eye stimulation > right eye

timulation’ in the same three subjects. Qualitative inspection suggests

here are very small, significant clusters of ocular specificity that

lternate between left- and right-sensitivity at a fine spatial scale. 

Notably, visual inspection of Fig. 2 A suggests that, at least in some

ubjects, high z-values are mostly located in the dorsal bank of V1.

uantitative analysis confirms that 65% of the significant vertices at

he p < 0.05-threshold is located in the (retinotopically-defined) dorsal

ank of V1 (median 59%, range from 52% to 94%, different from 50%

ith t(6) = 2.9, p = 0.028). This overrepresentation of the dorsal bank is

ost likely driven by the fact that the ventral bank of V1 on average lies

lightly more rostral, which makes it lie further away from the surface

eceiver coils and less well-covered by our field-of-view. 

.2. Reproducibility of ocular dominance maps 

In line with earlier work on fMRI of ODCs ( Cheng et al., 2001 ;

acoub et al., 2007 ), we first tested whether ocularity maps were repro-
3 
ucible over time. For six subjects, we split the data into the first and

econd part of the session and estimated activation patterns for these

wo halves separately. We correlated the activation patterns of these two

alves on the surface within the V1 mask that was defined by the retino-

opic mapping paradigm. For this analysis, the activity patterns were

veraged across cortical depth. Out of six subjects, five subjects showed

obust correlations in their activation pattern. These within-session ac-

ivity pattern correlations ranged from r = 0.41–0.80 (median 0.59; see

ig. 3 A). The sixth subject (subject 5) showed no robust within-session

orrelation ( r = -0.02 for the left and r = 0.02 for the right hemisphere)

nd was removed from any subsequent analyses. Another subject’s (sub-

ect 1) irregular folding of the left hemisphere placed a large part of the

alcarine outside the scan protocol (see supplementary materials S3 for

etails). This hemisphere was left out of all subsequent analyses. For the

ve subjects that showed highly significant correlations, the binarized

cular preference of the surface vertices (’left’ or ’right’) was consistent

cross the two session halves for 60–79% of the vertices (median 70%).

For a seventh subject, we acquired data in two separate sessions in

msterdam, as well as a third session in Beijing, China, using a different

T MRI system. Across the two sessions in Amsterdam, activation maps

n V1 correlated with r = 0.36 in both hemispheres. The correlation be-

ween Amsterdam and Beijing was considerably smaller but significant,

ee supplementary materials S4 for details. 

.3. ODC properties of ocular-preference maps 

Having verified the consistency of these ocular dominance patterns,

e turned to more detailed analyses of the spatial properties of these

cular dominance patterns to positively identify these patterns as ODCs.

First, we know that ODCs are largely constrained to V1, stopping

ather abruptly at the V1/V2 boundary ( Adams and Horton, 2009 ;

http://aeneas.labs.vu.nl/odc/
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Consistency z-maps within sessions Consistency z-
maps across

sessions

Amsterdam session 1
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Left hemisphere

Right hemisphere
frequency

Legend

frequency

Fig. 3. Robustness across runs and sessions 

A) Correlations between ocularity maps of first 

and second half of the mapping sessions. All 

subjects except subject 5 show consistent oc- 

ularity patterns across the two halves of their 

session. B) One subject was scanned during two 

separate sessions in Amsterdam. Across activa- 

tion maps from these two sessions, we found 

slightly lower, but still highly significant cor- 

relations between the ocularity maps. 

Fig. 4. Known properties of ODC that replicate 

in UHF-fMRI ODC mapping. A) In V1, but not 

V2, the distribution of z-values is robustly differ- 

ent from chance. This is consistent with earlier 

work that has shown that V1 is considerably 

more sensitive to ocularity than other areas (al- 

though there are monocular "stripes" in V2. B) 

Estimation of spatial frequencies on the surface: 

we used a filter bank of Gabor patches and con- 

volved it with ocularity maps on a flattened 

cortical surface, to estimate a map of main spa- 

tial frequencies across V1. C) The dominant spa- 

tial frequency is constant across cortical depth. 

However, other spatial frequencies have more 

power near the pial surface. D) the total amount 

of power in the frequency band corresponding to 

wavelengths of 2–4 mm peaks at medium corti- 

cal depth. Different marker colors correspond to 

different subjects, shaded area corresponds to 

67% confidence interval (S.E.M.). E) The indi- 

vidual retinotopic maps of V1 allow for the analy- 

sis of the ocularity maps in the visual field. Consis- 

tent with earlier work, when we combine data 

from both eyes, we find an overrepresentation 

of the ipsilateral eye at the approximate visual 

location of the blind spot (ovals). 
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dams et al., 2007 ). Indeed, the patterns we find are restricted to the

rea of V1. The percentage of significant z -values at p < 0.05 (two-sided,

bsolute z -values higher than 1.96) was higher than chance level in V1,

hile not in V2 for 5 out of 6 subject-sessions for the left hemisphere

average of 10.7% vs 5.2%; t(6) = 2.00, p = 0.10) and for 6 out of 7

ubject-sessions for right V1 (average of 10.4% vs 5.3%; t(7) = 1.55,

 = 0.17); see Fig. 4 A). 

Second, ocular dominance columns are known to occur at a spe-

ific range of spatial frequencies. Post-mortem work estimates that

DCs are about 730–995 micrometers wide ( Adams and Horton, 2009 ;
4 
dams et al., 2007 ). Yacoub et al. (2007) estimated a column width

f 1070 micrometer using GRE and Spin-Echo fMRI techniques and

nisotropic voxels. To compare our fMRI results to earlier work, we con-

olved the left/right-difference z-maps within V1 on a flattened surface

ith a set of Gabor patches with different spatial frequencies, ranging

rom 1 mm to 10 mm/cycle, each using 16 different orientations (see

ig. 4 B). This yielded, for every location on the reconstructed surface, a

istribution of power at different spatial frequencies. 

All subjects showed a spectral power distribution with a peak around

 wavelength of approximately 2.7 mm/cycle ( Fig. 4 C). This is consis-
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ent with a column size of approximately 2.7 / 2 = 1.35 mm wide. This is

ider than the approximately 1 mm width that is found in post-mortem

ork. We note that the BOLD transfer function, blurring due to slow

-space sampling and post-hoc resampling to the cortical surface will

hift the power spectrum towards longer wavelengths ( Chaimow et al.,

011, 2018a,b , 2011 ; ; Shmuel et al., 2007 ). The dominant wavelength

f 2.7 mm/cycle was constant across cortical depth (F(5, 60) = 0.74,

 = 0.60). 

Third, as ocular dominance preference is inherited from the bottom-

p afferents from the lateral geniculate nucleus (LGN) in the thalamus,

he ODC pattern should be strongest in the middle layers of V1 which re-

eive this afferent input. Indeed, the power at the dominant wavelength

hows a non-monotonic curve, peaking not at the pial surface (where

OLD amplitude is greatest) but near the middle layers. When we per-

ormed Bayesian hierarchical fits of both a linear model and a quadratic

odel (see methods), the quadratic model explained the relationship be-

ween cortical depth and the total spectral power better than the linear

odel (Watanabe–Akaike information criterion (wAIC) = − 398.44 for

he quadratic model vs wAIC = − 324.53 for the linear model). The peak

as estimated to be at approximately 40% cortical depth (95% highest

osterior density HPD: [5%, 75%]), where the pial surface corresponds

o 0% and the gray matter/white matter-border to 100%. 

Fourth, we focused on the blind spot: a small part of the visual field

f each eye that is occluded by the optic disc (the start point of the

ptic nerve, where the retina contains no photoreceptors). These blind

pots, one for each eye, should be detectable in our ODC patterns as a

atch of monocular preference for the ipsilateral eye at about 15 de-

rees eccentricity, just below the horizontal meridian of the visual field

 Adams and Horton, 2009 ; Adams et al., 2007 ). To visualize this, we

apped the ODC patterns into visual space using the pRF estimates of

ur retinotopic mapping experiment ( Fig 2 B). This indeed revealed ar-

as of dominance of the ipsilateral eye at a location consistent with the

lind spot (although somewhat lower in the visual field; peak at x = -/ +
5.1 and y = -7.9 degrees-of-visual-angle; Fig. 4 E). 

We contend that this collection of findings consistently identifies our

cular dominance patterns as human ODCs. We investigated a further

et of possible predictions of ODC properties derived from post-mortem

tudies and animal studies, but technical constraints such as limited spa-

ial resolution and the distortions induced by sampling volumetric data

o the surface limit the testability of these predictions (see supplemental

aterials S2). 

.4. The effect of attention on the BOLD response across cortical depth 

After having established that the ocularity maps we found are ro-

ust and consistently follow predicted ODC properties, we turned to the

uestion how ODCs in V1 are modulated by spatial attention, across cor-

ical depth. Participants were asked to report on either a monocularly-

resented part of the stimulus array (the rotating, flickering checker-

oard), or the binocularly-presented part of the stimulus array (the fix-

tion dot) in separate experimental runs featuring identical visual stim-

lation. 

We selected visually responsive voxels in V1 (absolute z-value of

eft + right stimulation > baseline contrast larger than 2.3; approx.

000 − 9000 voxels per subject) and tested differences in BOLD response

mplitude as a function of stimulation and attentional condition. Then,

o prevent double dipping, we assigned voxels to be left-eye or right-

ye preferring, using leave-two-runs-out cross-validation (one for each

ttentional condition). Given these ocular preferences, we could now

esignate voxels as either "stimulated" (e.g., left-eye stimulation of left-

referring column) or "unstimulated" (e.g., right-eye stimulation of left-

referring column). Finally, voxels were assigned to 5 exclusive regions

f interest based on cortical depth, as defined by the equivolumetric

lgorithm of CBS-tools ( Bazin et al., 2014 ; Huntenburg et al., 2018 ;

aehnert et al., 2014 ). 
5 
Fig. 5 A shows that, as should be expected when using GRE lami-

ar fMRI ( Markuerkiaga et al., 2016 ; Polimeni et al., 2018 ; Siero et al.,

011 ), the BOLD response is larger for more superficial cortical depths,

n all conditions (main effect of cortical depth on BOLD response: F(4,

0) = 22.9; p < 0.001 for left V1; F(4, 24) = 17.1; p < 0.001 for right

1). 

The stimulation of the preferred eye of a voxel showed a large main

ffect across all cortical depths (F(1, 5) = 45.8, p = 0.0011 for left V1;

(1, 6) = 46.7, p = 0.005 for right V1), as well as an interaction with

ortical depth (F(4,20) = 10.9; p < = 0.001 in left V1, F(4, 24) = 13.6;

 < 0.001 in right V1): the effect of stimulation was larger in voxels

loser to the CSF. 

In contrast, the main effect of attention was only marginally signifi-

ant for left V1 (F(1, 5) = 14.2, p = 0.013) and even non-significant for

ight V1 (F(1, 6) = 1.5, p = 0.26). However, we did find a highly signifi-

ant interaction effect between attention and cortical depth in both left

F(4, 20) = 7.29; p = 0.0009) and right V1(F(4, 24) = 15.4; p < 0.001

n right V1). This indicates that although the overall effect of attention

n the BOLD response in V1 is relatively weak, it is much stronger for

oxels near the CSF (see Fig. 5 B). 

Interestingly, there was no significant interaction between stimula-

ion condition and attention (F(1, 5) = 0.08, p = 0.78 for left V1; F(1,

) = 0.23, p = 0.65 for right V1), nor a three-way interaction between

timulation, attention and cortical depth (F(4, 20) = 0.08; p = 0.99 for

eft V1; F(4, 24) = 0.26, p = 0.90 for right V1). In other words: the effect

f attention on BOLD activity in ODCs was independent of whether the

referred eye of an ODC was stimulated or not. This is consistent with

he notion that participants are not shifting their attention towards a

pecific eye. 

To control for the effect of draining veins, where the BOLD sig-

al in more superficial layers is contaminated by the signal of deeper

ayers, we used the linear laminar deconvolution approach devel-

ped by Markuerkiaga and colleagues ( Markuerkiaga et al., 2016 ;

arquardt et al., 2018 ). This deconvolution analysis also confirmed that

he relevance of the monocular and binocularly presented stimulus has

n effect exclusively at superficial cortical depth (at p < 0.05), whereas

he effect of stimulation of the preferred versus non-preferred eye ex-

sts across all cortical depths , with the largest effect in the middle layers

 Fig. 5 C and D). This confirms a dissociation of neural activity related

o thalamocortical input versus cortico-cortical feedback connections

cross cortical depth. 

Also for the deconvolved laminar signals, there was no interaction

etween attention and stimulation condition (F(1, 5) = 0.407, p = 0.85

or left V1; F(1, 6) = 0.069, p = 0.80 for right V1), nor a three-way

nteraction (F(4, 20) = 0.56, p = 0.69 for left V1; F(4, 24) = 1.28, p = 0.30

or right V1). Again, this suggests that in our experiment, subjects did

ot shift their attention in an eye-specific manner. 

.5. Decoding eye stimulation from moment-to-moment 

Univariate results such as the ones reported above may overlook

atterns in the data that multivariate decoding analyses do capture

multivariate pattern analysis MVPA; Haxby et al., 2001 ; Haynes and

ees, 2006 ; Kamitani and Tong, 2005 ; Mur et al., 2009 ; Norman et al.,

006 ; O’Toole et al., 2007 ; Tong and Pratte, 2012 ). Recent work has

hown that MVPA-techniques offer a powerful alternative to univariate

nalysis for UHF-fMRI data and that they can dissociate laminar-specific

ffects in granular and supragranular layers ( Vizioli et al., 2020 ). We

herefore conducted an additional layer-specific decoding analysis to

nvestigate the impact of attention on ODC patterns. 

We constructed a Bayesian encoding model for monocular popula-

ion coding, based on the model proposed by van Bergen and colleagues

 van Bergen et al., 2015; van Bergen and Jehee, 2019 ). It assumes two

ndependent neural populations coding for input of the left and right

ye and voxels’ activity is then modeled as a weighted sum of these two

opulations and their (co)variance as a multivariate normal distribu-
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Fig. 5. Percent fMRI signal change is modulated by stimula- 

tion of preferred eye, attentional condition and cortical depth. 

A) The raw percent signal change increases towards the pial sur- 

face in all four conditions: with attention on the checkerboard, 

both stimulated and unstimulated voxels, as well as when the 

subject is attending the fixation dot for both stimulated and un- 

stimulated voxels . Error bars are standard errors of the mean 

(SEM), bootstrapped across subjects. B) The size of the effects 

on the attentional and stimulation manipulation also increases to- 

wards the pial surface. However, stimulating the preferred eye 

led to increased BOLD activation across all cortical depths 

(strong main effect), whereas the effect of attention to the 

monocular stimulus only reaches (marginal) significance at the 

most superficial cortical depth. Still, the interaction between 

cortical depth and the attentional effect is highly significant at 

p < 0.001. C) The BOLD response was deconvolved across corti- 

cal depth using the model proposed by Markuerkiaga et al. (2018). 

This analysis showed a much flatter laminar profile of inferred 

activity. D) A plot of the laminar deconvolved responses. This 

analysis confirms the hypothesis that thalamo-cortical input 

processes and cortico-cortical feedback processes lead to dif- 

ferent activity profiles across cortical depths. ∗ ∗ ∗ p < 0.001, ∗ 

p < 0.05, † p < 0.1 
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Fig. 6. An inverted encoding model of neu- 

ral ocular dominance populations can reliably 

decode the ocular stimulation condition on a 

moment-to-moment basis. A) Traces of the log 10 

Bayes Factor odds between left and right eye stim- 

ulation for all runs of a single subjects. Note how 

the original stimulus design can be read out 

from decoded, previously unseen data from V1 

using the activation patterns of single fMRI vol- 

umes. B) Mean Bayes Factor trace across subjects, 

splitted across different cortical depths. Note how 

the model is more certain about its predictions 

for BOLD data that was sampled closer to the 

pial surface. C) Accuracy of the decoder for dif- 

ferent cortical depths and attentional conditions. 

Error bars indicate bootstrapped standard er- 

rors of the mean (SEM). The decoder performs 

best at middle cortical depths. There are no sig- 

nificant differences between the two task con- 

ditions at any cortical depth. There is also no 

significant main effect or interaction effect related to the task conditions. n.s. = not significant, † = p < 0.1 
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ion, consisting of a weighted sum of independent voxel noise, shared

oxel noise, and binocular population noise. The model was fit and eval-

ated per sampled time point, sampled at different cortical depths and

ross-validated across runs (see methods section for details). Since the

ata were collected using a 3D EPI with a relatively long TR (4 s) and

timulus blocks were at least 3-6 volumes long, we chose to classify indi-

idual volumes, rather than deconvolving the signal time-course in any

ay. 

Stimulus eye-of-origin decoding was reliably above chance in all sub-

ects (see Fig. 6 A for traces of the log 10 Bayes Factor for all the runs of
6 
n individual subject), with volume-to-volume accuracies ranging from

6% to 84% for left V1 and from 68% to 91% for right V1. 

Bayesian hierarchical model comparison showed, both for left and

ight V1, that the relationship between cortical depth and decoding ac-

uracy is better explained by a quadratic model than a linear model

wAIC of − 321.4 vs − 257.54 for left V1 and − 291.12 vs − 217.78 for

ight V1). Furthermore, modelling suggests that highest decoding accu-

acy is achieved by using BOLD activity at a cortical depth of approx-

mately 27 % cortical depth for left V1 (albeit with large uncertainty,

5% HPD: [-193%, 315%]) and approximately 45% for right V1 (95%
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PD: [24%, 107%]). This cortical depth roughly corresponds to the lay-

rs at which our ODC patterns are strongest ( Fig. 4 D). It is these layers

here thalamocortical monocular fibers enter V1 and ocular neural ac-

ivity patterns as measured by post-mortem techniques are most promi-

ent ( Adams and Horton, 2009 ; Adams et al., 2007 ; Dougherty et al.,

019 ). 

There was no effect of attention condition on the accuracy of the de-

oder (F(1, 5) = 0.063, p = 0.81 for left V1 and F(1, 6) = 0.86, p = 0.38

or right V1), nor an interaction between the attention condition and

ortical depth (F(5, 25) = 1.97, p = 0.12 for left V1; F(5, 30) = 1.33,

 = 0.28 for right V1). An apparent trend of increased decoder accuracy

or the before-last cortical depth for binocular attention was not statisti-

ally significant ( Fig. 6 C; t(6) = 2.10, p = 0.07 when both hemispheres

re combined; also not significant for individual hemispheres). In sum,

he pattern of results from the decoding analysis was consistent with

he univariate results presented above: thalamocortical input is most

trongly represented at deep and middle cortical depth, and spatial at-

ention does not selectively gate information from a specific eye. 

. Discussion 

We applied 7 Tesla functional MRI to map ocular dominance columns

ODCs) in healthy human subjects, while participants focused their

ttention on either a monocularly presented stimulus or a binocu-

arly presented fixation mark. Crucially, whereas earlier studies that

apped ODCs employed highly anisotropic "pencil voxels", with slices

.5–7.3 times thicker than the in-plane resolution ( Cheng et al., 2001 ;

echent and Frahm, 2000 ; Goodyear and Menon, 2001 ; Menon et al.,

997 ; Yacoub et al., 2007 ), for the first time, we mapped ODCs using

sotropic voxels. This allowed us to study monocular BOLD activity in

1 along three dimensions: not only the 2D columnar location on the

ortical surface, but also cortical depth ( Kuehn and Sereno, 2018 ). The

elationship between cortical depth and neural activity as measured by

OLD fMRI has the potential to be highly informative of brain function,

ince feedforward- and feedback-processes are believed to reside at dif-

erent cortical depths ( De Martino et al., 2018 ; Lawrence et al., 2019 ;

tephan et al., 2019 ). The combination of columnar and laminar sensi-

ivity allowed us to measure the effect of thalamocortical input without

anipulating stimulus properties, which are possibly confounded with

ther higher-order perceptual processes. The laminar patterns in our

ata align remarkably well with post-mortem tracing studies and elec-

rophysiological recordings in rodents and non-human primates. 

First, the effect of stimulating the preferred versus non-preferred

ye, after correcting for draining veins, was most robust at deep and

edium cortical depth, consistent with thalamocortical input into in-

ragranular layer 6 and granular layer 4. Concordantly, the depth at

hich eye-of-origin decoding was most accurate was consistent with

he granular layer and model comparisons show that its performance

cross depth is best described by an inverted-U pattern. Considering the

ffect of draining veins, where BOLD signals leak outwards towards the

ial surface ( Heinzle et al., 2016; Polimeni et al., 2018 ), we infer that

he decoder was mostly relying on BOLD activity originating from deep

nd middle cortical depths. Interestingly, it is well-known that thalam-

cortical projections into V1 are most numerous in the granular layer

c and this layer has so-far received most attention as the thalamo-

ortical input layer of primary sensory cortex in laminar fMRI studies

 Koopmans et al., 2010 ; Lawrence et al., 2019 ; Stephan et al., 2019 ).

owever, less well-known is that recent work in rodents has shown that

eural activity in infragranular layer 6 also represents direct input from

halamus, with transmission latencies that are indistinguishable from

hose of layer 4C ( Constantinople and Bruno, 2013 ). Furthermore, ad-

itional work in rodents has shown that thalamocortical projections in

ayer 6 tightly follow the columnar structure of layer 4 in rodent bar-

el cortex ( Crandall et al., 2017 ). Intriguingly, Tootell and colleagues

 Tootell et al., 1988 ) used radioactively labelled 2-deoxyglucose (DG)-

ptake in post-mortem studies, to visualize ODCs in macaques and show
7 
hat the largest DG uptake, after layer 4C, was to be found in layer

. Similarly, in a recent study on binocular modulation of monocu-

ar neurons in layer 4 of V1 in macaques, Dougherty and colleagues

 Dougherty et al., 2019 ) found the largest proportion of monocular neu-

ons in layer 4 and "layer 5/6" (their supplemental Fig. S1, panel D). To-

ether, these findings suggest an important refinement of the perhaps

verly-simplistic model common in the laminar UHF-fMRI literature,

here thalamocortical feedforward terminations are thought to termi-

ate exclusively in granular layers. 

The effects of spatial attention on the laminar activation profile also

t earlier computational, anatomical and electrophysiological work. In

ur data, shifts of attention to the monocularly-presented stimulus fea-

ures exclusively modulated BOLD responses near the pial surface. This

s consistent with neurocomputational models of canonical microcir-

uitry where higher-order areas send feedback signals to supragranu-

ar layers of upstream cortical regions ( Bastos et al., 2012 ; De Martino

t al., 2018 ; Dumoulin et al., 2018 ; Stephan et al., 2019 ). It is also con-

istent with tracing studies that suggest that the majority of neurons in

2 that project to V1, project to supragranular layer 1 ( Anderson and

artin, 2009 ; Rockland and Virga, 1989 ). Furthermore, other cortical

epth-resolved fMRI studies have shown that the BOLD signal at su-

erficial cortical depth is modulated by feedback processes in primary

isual (e.g., Muckli et al., 2015 ; Lawrence et al., 2019 ) and auditory cor-

ex ( De Martino et al., 2015 ). Finally, recent electrophysiological stud-

es on attention and visual working memory in non-human primates by

an Kerkoerle and colleagues ( Van Kerkoerle et al., 2017 ) and Denfield

nd colleagues ( Denfield et al., 2018 ) showed that attention correlates

ith increased top-down inputs to infragranular layers and especially

upragranular layers. An interesting question is why electrophysiologi-

al studies found effects of attention in infragranular layers, whereas our

tudy (as well as others, e.g., Muckli et al., 2015 ; Lawrence et al., 2019 )

nly find attentional effects at a cortical depth consistent with supra-

ranular layers. Possibly, this difference in results is due to a smaller

hange of neural firing in infragranular layers as compared to supragran-

lar layers: in fact, Denfield and colleagues, in their electrophysiological

ork, found a significant effect in infragranular layers in only one-out-

f-two attentional conditions ( Denfield et al., 2018 ). We speculate that

ctivity in the infragranular layers is representing mostly intracolumnar

rocessing: neural activation from supragranular to infragranular layers

 Bastos et al., 2012 ; Stephan et al., 2019 ) and that laminar fMRI is less

ensitive to these short-range projections than the longer corticocorti-

al feedback and thalamocortical feedforward projections. However, we

an not exclude that the lack of an attentional effect at deeper layers is

partly) due to an inherently smaller GRE BOLD response. 

We did not find an interaction between the monocular stimula-

ion of the preferred eye and task relevance of the monocular stim-

lus. This implies that although attentional processes influence activ-

ty in the supragranular layers of V1, they do not impinge on the oc-

lar dominance activity pattern as measured by BOLD fMRI. That is,

 shift of spatial attention, when directed to a monocularly presented

timulus feature, does not gate the lateral geniculate-cortical inputs to

1 based on their ocularity (eye-of-origin). Earlier work in the con-

ext of binocular rivalry has, however, shown that attentional processes

an modulate monocular input streams ( Zhang et al., 2011, 2012 , ).

ne possible explanation for this apparent discrepancy in results per-

ains to the experimental paradigm used: possibly, attentional gating

f the two eyes only happens when these send highly conflicting in-

ormation, such as in standard binocular rivalry ( Leopold and Logo-

hetis, 1996 ; Levelt, 1965 ; Tong et al., 2006 ) and continuous flash sup-

ression paradigms ( Tsuchiya and Koch, 2005 ). In the paradigm used

ere, one eye was presented with a flickering checkerboard, whereas

he other eye, at the same retinotopic location, was presented with a

lack background, as if this part of the stimulus was occluded in one

ye. Although this difference between the two input streams does in-

eed represent a conflict, this conflict between monocular signals is

uch less salient than during full-fledged rivalry paradigms, where stim-
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li are purposely made highly incongruent, such as equal-contrast, or-

hogonal gratings of different colors ( Zhang et al., 2012 ; Haynes et al.,

005 ; Haynes and Rees, 2005 ; Zhang et al., 2011 ). A second potential

xplanation of the lack of interaction between the input- and feed-back

anipulation in our data, is that attentional gating of rivaling stimuli

ight not be resolved at the level of V1, but already earlier in the visual

rocessing stream, at the stage of the lateral geniculate nucleus (LGN).

ndeed, higher-order attentional effects and perceptual states can influ-

nce neural processing already at the level of LGN ( Haynes et al., 2005 ;

’Connor et al., 2002 ; Wunderlich et al., 2005 ). Future work should elu-

idate the precise interplay between attention and ocular processing by

easuring ODCs in V1 across cortical depth using UHF-fMRI during full-

edged binocular rivalry and simultaneously imaging ocular dominance

ayers in LGN ( Zhang et al., 2010 ). 

A recent 7T fMRI study by Lawrence et al. (2019) also investigated

he laminar BOLD activation patterns of thalamocortical bottom-up and

orticocortical feedback processes in V1. Lawrence and colleagues did

ot use columnar inputs structures, but different stimulus contrast lev-

ls to experimentally manipulate thalamocortical input. The feedback

anipulation was also different, as a feature-based attention as opposed

o a spatial attention manipulation was used: subjects had to report on

ne of two orthogonally oriented stimulus features of the same stim-

lus at the same retinotopic location. To correct for the increase of

OLD activity towards the pial surface due to draining veins, Lawrence

t al. normalized (z-scored) the estimates of raw BOLD activity for their

ain results. This approach is comparable to our decoding approach,

here the performance of the decoder is largely determined by the ra-

io between task-related activity and the variance of the BOLD signal.

ndeed, Lawrence and colleagues found the largest effect of their in-

ut manipulation at medium cortical depth, as we did here. Their input

lso showed an inverted-U shape, consistent with our decoding results.

owever, Lawrence and colleagues interpret this U-shaped pattern as

vidence for thalamocortical input exclusively into the middle granular

ayer of V1. We propose that, since there is a significant effect of stimulus

ontrast near the white/gray matter border as well (both for standard-

zed and raw data, their Fig 3, supplement 5), it can not be excluded

hat this inverted U-shape is the result of thalamocortical inputs to both

nfragranular and granular layers. This speculation highlights the im-

ortance of modelling of the draining vein problem and/or taking this

nto account when interpreting raw BOLD effects across cortical depth

 Heinzle et al., 2016 ; Marquardt et al., 2018 ; Polimeni et al., 2018 ). For

he feature-based attentional manipulation, Lawrence et al. found the

umerically largest (normalized) effect of attention at more superficial

ortical depth, as we did here. They found a highly significant main ef-

ect of attention across all cortical depths and the interaction between

ortical depth and effect size was non-significant (whereas we found

 significant interaction effect at p < 0.001), suggesting that in their

xperiment, attention modulates all cortical layers equally. One expla-

ation for this apparent discrepancy in results is that the resolution of

oth our anatomical (0.26 vs 0.51 mm 

3 ) and functional data (0.34 ver-

us 0.51 mm 

3 ) was about 1.5–2 times higher than the data presented in

awrence et al., which could have reduced BOLD signal blurring across

aminae due to the increased fidelity of cortical surface reconstructions

nd reduced partial volume effects. Another explanation pertains to the

roperties of the task: in the experimental paradigm used by Lawrence

t al., the orientation that needed to be attended by the subjects was

xplicitly relevant to the task. This is different from our task, where the

elevance of the ocularity of the input signals is only implicit and of

 different nature than the orientation of a stimulus. The relevance of

rientation in the task of Lawrence and colleagues could have recruited

dditional processing of incoming signals, such as cross-orientation sup-

ression. This processing could have happened via intra-columnar con-

ections from the supra- to the infragranular layers. Future work should

nvestigate different forms of attention, like spatial and feature-based
8 
ttention using UHF-fMRI in the same scanning session, to determine

hether these subtle differences in the laminar location of attentional

ffects are indeed due to fundamentally different mechanisms. 

A related limitation of our study is that the retinotopic area that

eeded to be attended during the binocular attention-condition (fixa-

ion color) was smaller than during the monocular attention-condition

checkerboard rotation direction) and that the task requirements were

lightly different. This means that the attentional difference between

he two conditions is both spatial and ocular. It is unclear how this con-

ound could have driven any spurious laminar effects, but in future work

t could be interesting to compare attentional conditions that are iden-

ical in task load and size of the area that need to be attended (e.g., in

 binocular version of the paradigm used in Liu et al., 2020 ). 

Another important limitation of our study is that we used GRE-

MRI rather than alternative fMRI techniques like GRASE ( Yacoub et al.,

007 ), VASO ( Huber et al., 2014 ), or balanced steady-state free preces-

ion (bSSFP; Lee et al., 2008 , Miller, 2012 ) that have potentially higher

aminar specificity. Therefore, in our study we had to resort to a laminar

econvolution model ( Markuerkiaga et al., 2016 ) to account for drain-

ng veins, whereas techniques like GRASE, VASO, and bSSFP avoid the

raining-vein problem during measurement, since they are less sensitive

o signal arising from these veins. However, this increased specificity

omes at a cost of increased SAR, reduced spatial and temporal resolu-

ion, as well as a reduction in sensitivity. Very recent, preliminary work

as compared GRE-fMRI, GRASE and VASO in their ability to visualize

cular dominance columns ( Haenelt et al., 2020 ). Interestingly, Haenelt

nd coworkers showed that the estimated spatial frequency across the

hree techniques was highly similar (~1.3 mm, in line with this study).

nd although GRASE and VASO seemed to be more specific in their lam-

nar response profiles, this came at a cost of 2-8 times lower z-values for

he same amount of data. Liu et al. showed a similar tradeoff when they

ompared the influence of attention on contrast-response functions us-

ng both GRE-fMRI and bSSFP. Balanced SSFP results were more in line

ith electrophysiological work, but this increased specificity came at the

ost of highly anisotropic voxels of 0.3 × 0.3 × 3.0 mm ( Liu et al., 2020 ).

learly, future work such as that of Haenelt et al. and Liu et al. will be

f great importance to the field of laminar fMRI, since GRE-fMRI is still

ery-much its main workhorse (e.g., Kok et al., 2016 ; Kasper et al., 2019 ;

awrence et al., 2018 ; Marquardt et al., 2020 , 2018 ; Schneider et al.,

019 ; Zaretskaya et al., 2020 ). We think that in future comparisons, it

ill be important to consider the higher sensitivity and ease-of-use of

RE-fMRI and compare SE-/VASO-/sFFP-approaches to GRE-fMRI using

 model-based deconvolution approach, over and above just the raw,

nmodeled GRE-fMRI signal. 

Due to the use of GRE-fMRI, some caution should also be taken in the

nterpretation of the decoding (MVPA)-results. Temporal SNR degrades

owards the pial surface and one could argue that the decrease in de-

oding accuracy near the pial surface that we found could be due to in-

reased (physiological) noise, rather than a neural effect. However, this

ncrease in noise is also counteracted by an increased size of the BOLD-

esponse, so it is hard to quantify the impact of the noise. In recent work,

izioli et al. (2020) advocate for the use of MVPA-techniques to ana-

yze laminar GRE-fMRI data and empirically show that such techniques

an dissociate granular from supragranular effects, much like the results

resented here. Future work should further explore and model the re-

ationship between MVPA decoding accuracies, physiological noise and

aminar effects. 

In conducting this study, we took the utmost care to tackle the wide

ange of methodological challenges that ultra-high field fMRI has to

urmount. We stress here that, in our experience, extensive manual

hecking and correction of initial masking, unwarping, registration and

egmentation are essential to make valid inferences about the relation-

hip between cortical depth and BOLD activation patterns. We therefore

ncluded a very detailed methods section and shared all our analysis
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cripts 1 and raw data 2 to open source repositories. We believe that such

haring of data and code is of crucial importance to understand what

s and what is not possible with UHF cortical depth-resolved fMRI and

o determine the level of methodological rigor needed to further this

oung and exciting field ( Poldrack et al., 2019 ). 

. Methods 

.1. Participants 

Seven participants were recruited from the Vrije Universiteit Ams-

erdam. They were aged between 21 and 39 years old. All participants

ave informed consent, and procedures were approved by the ethical

eview board of the Vrije Universiteit Amsterdam. 

. Apparatus 

.1. MRI acquisition 

All data from Amsterdam were acquired using a Philips Achieva 7 T

canner (Best, Netherlands). For the anatomical data, we used a volume

ransmit coil for excitation and a 32-channel head coil for signal re-

eption (Nova Medical, MA, USA). For the functional acquisitions, data

ere acquired using two custom-built high-density 16-channel surface

oils (total 32 channels) for signal reception ( Petridou et al., 2013 ) and

he standard NOVA coil for transmission. The gradient coil has a maxi-

um amplitude of 40 mT/m and a 200 T/m/s maximum slew rate. 

.2. Stimulus presentation 

Fully separated dichoptic stimulus presentation was achieved by

se of prism glasses ( Schurger, 2009 ), with a septum and a back-

rojection screen mounted inside the transmit coil. The quasicircular

ack-projection screen was 29 cm in diameter to fit precisely into the

ransmit coil. Depending on the individual participant’s positioning, the

esulting distance to the screen was between 12 and 15 cm. This caused

ariations in the maximal stimulus eccentricity (see below) across sub-

ects, for which we corrected in our pRF eccentricity and size estimates.

or some participants, we used positive-diopter lenses to aid their abil-

ty to maintain focus at this short distance. To minimize reflections in-

ide the transmit coil it was covered in black cloth, and the septum was

ainted using matte black paint. 

A ProPixx (VPixx technologies, Saint-Bruno, Canada) projector run-

ing at 1920 × 1080@120 Hz was used for stimulus presentation, imple-

enting a linearized lookup table. As the scanner environment is hostile

o exact luminance output measurements of this custom setup the max-

mal luminance of the display is unknown. Based on the manufacturer’s

ata however, we estimate that it was over 500 cd/m 

2 . Due to the shape

f our projection screen and the distance between screen and projector,

he width and height of the effective screen area were approximately

400 by 700 pixels. 

.3. MRI protocols 

.3.1. Anatomical data 

For every subject, we collected both MP2RAGE ( Marques et al.,

010 ) and MP2RAGE-ME ( Caan et al., 2019 ) data. The MP2RAGE-ME

FOV: 204.8 × 204.8 × 200.6 mm; matrix size: 320 × 320 × 313; res-

lution 0.641 × 0.641 × 0.64 mm; TR MP2RAGE = 6.246 s; TI 1 = 0.67 s;

I 2 = 2.7 s; FA 1 = 7; TR excitation,1 = 0.0062 s; TE 1 : = 0.003 s; FA 2 = 6°;

R excitation,2 = 0.0314 s; TE 2,1 = 0.003; TE 2,2 = 0.0155 s; TE 2,3 = 0.02

; TE 2,4 = 0.0285) was collected because it offered both high-quality
1 https://github.com/VU- Cog- Sci/odc _ mapping . 
2 https://openneuro.org/datasets/ds002295 . 
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9 
1-weighted images, as well as images with T2 ∗ and PD-contrast (the

our echoes of the second inversion images). These T2 ∗ -weighted im-

ges were useful for masking out the sagittal sinus from the gray-matter

GM)/white-matter (WM) segmentation (the sagittal sinus has the same

mage intensity as GM on standard T1w-images, which can cause severe

roblems for automated segmentation algorithms) . 

In addition, a standard MP2RAGE (FOV: 220 × 220 × 200.32

m; matrix size: 352 × 352 × 313; resolution: 0.625 × 0.625 × 0.64

m;TR MP2RAGE = 5.5 s; TI 1 = 0.8 s; TI 2 = 2.7 s; FA 1 = 7°; FA 2 = 5°;

R excitation = 0.0062; TE = 0.003 s) was collected, because of its

igher signal-to-noise and gray-matter/white-matter contrast and would

ater be combined with the MP2RAGE-ME images to aid the gray-

atter/white-matter-segmentaiton(see Structural Preprocessing ). 

To correct for residual B1 + effects in the MP2RAGE(ME), three

REAM B1-images (FOV: 224 × 224 × 224 mm; matrix size:

4 × 64 × 64; flip angles of 15, 30 and 45º to cover a range of B1 +
alues were also collected). 

.3.2. Functional data 

In Amsterdam, for the mapping of the ocular dominance columns,

unctional data was collected using the ultra-high resolution fMRI pro-

ocol described in Petridou et al. ( Petridou et al., 2013 ). Specifically, we

ollected a 3D GRE-EPI protocol at a resolution of 0.7 mm isotropic with

 volume acquisition time of 4 s (FOV = 120 × 120 × 22.1 mm; matrix

ize = 192 × 192; 30 slices; TR = 0.054 s TE = 0.027 s; FA = 20°; FOV,

20 × 120 × 21 mm (30 slices); echo planar factor, 27; acceleration

actor using SENSE encoding: 3.5 (right-left) × 1.3 (anterior-posterior);

8% oversampling in the slice direction). 

For the receptive field mapping paradigm, a higher temporal reso-

ution was warranted, to reliably estimate PRF parameters from the de-

ign matrix ( Dumoulin and Wandell, 2008 ). Therefore, for these runs,

he number of shots and thereby spatial resolution was reduced to 1

m (FOV = 160 × 160 × 34 mm; matrix size = 160 × 160; 34 slices;

R = 0.058 s; TE = 0.028 s; FA = 20°; echo planar factor 21; acceleration

actor using SENSE encoding: 3.5 (right-left) × 1.3 (anterior-posterior)).

his protocol had a volume acquisition time of 2.7 s. 

For both the 0.7 mm and 1.0 mm functional MRI protocols, we also

ollected an identical protocol, except with reversed phase-encoding

lips (phase-encoding in the opposite direction). Those images would

e used to correct for distortions due to B0 field inhomogeneities using

he "TOPUP"-algorithm ( Andersson et al., 2003 ). For the ocularity map-

ing paradigm, we collected 5 volumes with opposite phase-encoding.

or the PRF mapping paradigm, we collected 8 volumes with opposite

hase-encoding. 

.4. Experimental Paradigm 

.4.1. Framing stimulus array 

Both the PRF mapping paradigm, as well as the ocularity mapping

aradigm were presented within a larger stimulus array (the framing

timulus array ) that was designed to help the subjects comfortably fuse

he input images of the left and right eye and thereby to prevent them

rom making unwanted eye movements. Before an experimental run

tarted, the subject was able to move and rotate the left and right stim-

lus array with the response boxes, so that binocular fusion of the two

timulus arrays was as comfortable as possible. Specifically, the sub-

ect could translate, scale, and rotate the left and right stimulus array

ndependently. The subject was instructed to make the framing stimu-

us array as large as possible, without any of its parts falling out of the

isible area. 

See Fig. 2 B and D for a graphical representation of the framing stim-

lus array. It was built around a circular main stimulus aperture, with

 diameter of 23–28 degrees-of-visual-angle. Its exact size depended on

he shape of the subject’s head and the way the subject set up the stim-

lus at the beginning of the experimental run. On the outside of the

timulus aperture, an outer rim was presented with a width of 10% of

https://github.com/VU-Cog-Sci/odc_mapping
https://openneuro.org/datasets/ds002295
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he inner aperture (2.3–2.8 degrees-of-visual angle). This rim also con-

ained four checkerboard squares (3 × 3 cells) with a size of 30% of the

timulus aperture, to annotate the cardinal orientations of the stimulus

rray, aiding in the binocular fusion of the subject. 

The inner 5% radius of the stimulus array (approximately 1.15–1.4

egrees-of-visual-angle) was occupied by a fixation dot. The inner 33%

f this dot was colored red/green, the middle 33% was occupied by a

lack circle, and the outer part of the fixation dot was a white ring. The

olored dot in the middle of the fixation circle dynamically changed

olor according to an exponential distribution with a scale ( 𝜆) of 0.33,

orresponding to a mean duration of 3 s. However, the distribution was

eft-censored, such that only durations of two seconds or longer could

ccur, which increased the effective mean duration of the fixation dot

timuli to 5 s. 

.4.2. PRF mapping paradigm 

We used a standard "passing bar" PRF mapping paradigm

 Dumoulin and Wandell, 2008 ) that was presented binocularly using

he binocular stimulation setup described before (see Fig. 2 B for illus-

ration). The passing bar had a height of 12.5% of the main aperture

ize (approximately 2.875–3.5 degrees-of-visual-angle) and consisted of

000 purple/cyan (50%) and green/blue (50%) overlaid gabor patches

ith a spatial frequency that was sampled from a uniform distribution

etween 0 and 30 cycles/degree. The Gabors patches were uniformly

paced across the passing bar and were dynamically and randomly repo-

itioned according to a uniform distribution between 0 and 0.05 s. The

ize of the gabors was 0.75 degrees-of-visual angle. The Gabors were

hifting phase at a frequency of either 3 (50%) or 12 Hz (50%). Finally,

ll the stimuli inside the passing bar were flickering together according

o a square wave at a frequency of 12 Hz. The complete stimulus array

as visually extremely salient and was designed to maximally modulate

1 activity and to optimize the efficiency of the PRF mapping paradigm.

he power of the paradigm is reflected in the quality of the resulting

etinotopic maps at a volumetric resolution of 1 cubic millimeter, with-

ut any smoothing and collected in just over 15 min. 

Most subjects performed 3 runs of the PRF mapping paradigm (one

ubject performed 5 runs). Subjects were instructed to report changes of

olor (red/green) of the central fixation dot and ignore the passing bar

timuli. 

The paradigm started with only a fixation dot for 24 s, then a bar

ass from top to bottom in 30 s, a bar pass from top left to bottom

ight for 30 s, then a 12 s rest period with only the fixation dot and

perture stimulus array, then a 30 s bar pass from bottom to top, then

 30 s bar pass from bottom right to top left, then another 12 s rest

eriod, then a 30 s right-to-left bar pass and 30 s bottom left to top

ight bar pass, another 12 s rest period and finally a 30 left-to-right and

ottom left-to-top right bar pass. The total duration of the paradigm

as thus 324 s (5 min and 24 s). At the end of an experimental run, 8

ifferent and angularly equidistant bar passes were shown to the subject.

he paradigm ended with a 24 s period with only the fixation dot and

timulus array. 

.4.3. Ocular dominance mapping paradigm 

For the ocular dominance mapping paradigm, we used the same gen-

ral stimulus array as the PRF mapping experiment, but the moving bar

as replaced with a circular rotating and flickering checkerboard (see

ig. 2 D for illustration). The flickering checkerboard fitted exactly in

he inner aperture (23–28 degrees-of-visual-angle), but was masked by

 raised cosine, reducing the contrast for the outer 20% radius of the

heckerboard. 

The cells within the checkerboard had a width and height of 2

egrees-of-visual-angle. The contrast of the checkerboard was inverted

black cells become white and vice versa) according to a square wave

ith a frequency of 8 Hz. The Checkerboard was also rotating at a fre-

uency of 0.66 rotations per second. The direction of the rotation (clock-

ise versus counter-clockwise) was changed once every 5 s on average,
10 
ccording to the exact same left-censored exponential distribution as the

olor of the fixation dot. 

Importantly, unlike the framing stimulus array, the checkerboard

as only presented in one eye at a time (monocular stimulation). It was

rst presented to the left eye for 12 s, then the right eye for 12 s. Then

he paradigm continued with subsequent monocular stimulation for 16,

0, 24, 20, 16 and again 12 s. This particular block design was chosen

ased on earlier work in cats that showed that, when using GRE-fMRI,

 design with rapid changes in the stimulation of different columnar

atterns is more efficient in detecting columnar patterns than a design

here different columnar patterns are stimulated in isolated blocks with

o stimulation in between. The rationale for this approach is that, in

uch a rapid-switch design, non-columnar activation patterns, such as

hose arising from draining veins, are more similar across the stimu-

ation conditions and thereby easier to remove in differential contrast

nalyses ( Moon et al., 2007 ). Before and after the monocular stimula-

ion, an empty stimulus array was presented for 12 s. Thus, a single

xperimental run had a duration of 264 s (4 min and 24 s). Two sub-

ects performed 10 runs of the binocular mapping paradigm, the other

 subjects performed 8 runs. 

On uneven experimental runs, subjects were verbally instructed to

eport changes in color of the fixation dot with a response button box,

hereby focusing their attention on the binocularly presented part of the

timulus array. On even experimental runs, the subjects were verbally

nstructed to report changes in the direction of the rotation of the checker-

oard , with their response button box, thereby focusing their attention

n the part of the stimulus array that was monocularly presented. 

.5. Data analysis 

.5.1. Structural preprocessing 

To study the 2D (cortical location) and 3D properties (laminae)

f the functional organization of V1, precise delineation of the inner

nd outer border of the cortical surface is of the utmost importance

 Polimeni et al., 2018 ; Waehnert et al., 2014 ). Therefore, we spent a

ot of resources in a hybrid approach of automatic and manual seg-

entation of gray and white matter and CSF, as well as the subsequent

econstruction of the cortical surface. Because the correspondence be-

ween locations on the inner and outer surface of the cortical sheet

as central to some of our research questions, we mainly opted for

he surface inflation-approach of Freesurfer ( Polimeni et al., 2018 ) in

ost of our analyses, rather than level set-based approach such as im-

lemented in CBS tools ( Bazin et al., 2014 ; Huntenburg et al., 2018 ).

owever, for some analyses we did use the latter approach to estimate

ortical depth more precisely on a voxelwise basis. Furthermore, we

sed a combination of multiple software packages to preprocess and

egment the anatomical data. The two end goals of the structural pro-

essing workflow were (a) a cortical reconstruction by Freesurfer rep-

esented as a white matter and pial mesh, consisting of points and tri-

ngles ( Dale et al., 1999 ), (b) a white matter and pial surface recon-

truction by CBS-tools, represented by two level sets ( Bazin et al., 2014 ;

aehnert et al., 2014 ). To get the best possible segmentations with min-

mal manual intervention, we found it very helpful to combine the re-

ults of multiple segmentation algorithms as a "wisdom-of-the-crowd"-

pproach. See below for more details. 

We used the in-house developed python package pymp2rage ( de Hol-

ander, 2018 ) to estimate the T1-UNI image ( Marques et al., 2010 ) and

1 maps of the MP2RAGE and MP2RAGE-ME data. We used the B1 +
aps to correct for any residual B1 + bias fields ( Marques and Gruet-

er, 2013 ). Furthermore, we also estimated T2 ∗ /R2 ∗ -maps from the four

choes of the MP2RAGE-ME data using ordinary least-squares in log sig-

al space. 

The next part of the structural preprocessing pipeline is implemented

n a Docker image that can be found at https://github.com/VU- Cog- Sci/

p2rage _ preprocessing . The T1-UNI image of the MP2RAGE-ME pro-

ocol was registered with 6 degrees-of-freedom (rigid body transform)

https://github.com/VU-Cog-Sci/mp2rage_preprocessing
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3 https://github.com/kwagstyl/surface _ tools . 
4 https://github.com/spinoza-centre/spynoza/blob/7t _ hires/spynoza/hires/ 

workflows.py . 
o the T1UNI of the MP2RAGE protocol using FLIRT ( Jenkinson et al.,

002 ) and then resampled using windowed Lanczos sinc-interpolation

s implemented in ANTS ( Avants et al., 2014 ). 

We corrected the mean second inversion (INV2) for bias fields us-

ng N4BiasFieldCorrection ( Tustison et al., 2010 ), distributed with ANTs

.2.0 and used this as input to FSL’s brain extraction tool (; Jenkinson

t al., 2005, 2012 ). The skull-stripped average INV2 was then used as

nput to AFNI’s AutoMask mask with a clfrac -parameter setting of 0.5. to

stimate the background noise level and remove voxels from the mask

hat only contain noise. 

Then, we took the averaged image of the two T1UNI images, the two

NV1 and INV2 images, as well as the T1 maps and used them as input to

he MP2RAGE skull strip and MP2RAGE dura estimation modules of CBS

ools ( Bazin et al., 2014 ) as wrapped by Nighres ( Huntenburg et al.,

018 ) to make masks of the dura mater as well as the skull. The proba-

ilistic map of the dura as estimated by Nighres was thresholded at 0.8

o obtain a discrete mask of the dura. The dura mask was then dilated by

 voxels, excluding voxels that were manually or automatically labeled

s brain by the BET algorithm. 

Lastly, we made a very crude manual mask of the sagittal sinus using

arge voxel drawn using FSLEyes ( McCarthy, 2019 ). All voxels within

his mask were then thresholded based on their estimated R2 ∗ (1/T2 ∗ )

alue (voxels inside the sagittal sinus have very high R2 ∗ values due to

usceptibility effects). The precise threshold was manually determined

ut was on average approximately 1/20. This semi-automatic approach

ielded a very precise mask of the sagittal sinus. 

The dura and skull masks generated by Nighres, as well as the noise

oxel mask estimated by AFNI as well as the mask of the sagittal sinus

ere set to zero in the averaged T1UNI image. The masked T1UNI im-

ge was then used as input to the structural preprocessing module of

mriprep ( Esteban et al., 2019 ). 

In that pipeline, the T1-weighted (T1w) image was corrected

or intensity non-uniformity (INU) with N4BiasFieldCorrection

 Tustison et al., 2010 ), distributed with ANTs 2.2.0, and used as

1w-reference throughout the workflow. The T1w-reference was

hen skull-stripped using antsBrainExtraction.sh (B. B. ( Avants et al.,

008 )), using OASIS30ANTs as target template. Brain surfaces were

econstructed using freesurfer’s recon-all ( Dale et al., 1999 ), and the

rain mask estimated previously was refined with a custom variation

f the method to reconcile ANTs-derived and FreeSurfer-derived

egmentations of the cortical gray-matter of Mindboggle ( Klein et al.,

017 ). Spatial normalization to the ICBM 152 Nonlinear Asymmet-

ical template version 2009c ( Fonov et al., 2009 ) was performed

hrough nonlinear registration with antsRegistration (ANTs 2.2.0),

sing brain-extracted versions of both T1w volume and template.

rain tissue segmentation of cerebrospinal fluid (CSF), white-matter

WM) and gray-matter (GM) was performed on the brain-extracted

1w using FAST ( Zhang et al., 2001 ). The fmriprep preprocessing

orkflow yielded a cortical surface representation in Freesurfer format

n " hires "-mode, with an average edge length of 0.55 mm in the white

atter surface and 0.66 at the pial surface and that was used in further

nalyses. 

The masked T1UNI, T1map and skull and dura masks of Nighres were

lso used as input to the MGDM segmentation algorithm ( Bazin et al.,

014 ; Bogovic et al., 2013 ), as wrapped by Nighres ( Huntenburg et al.,

018 ). Then, to create a level set-based cortical surface representation,

he voxelwise GM/WM/CSF-segmentations of FAST ( Zhang et al., 2001 ),

reesurfer ( Dale et al., 1999 ), MGDM ( Bazin et al., 2014 ; Bogovic et al.,

013 ), as well as manual "correction masks" (see below) were averaged

nd used as input to the CRUISE cortical surface reconstruction algo-

ithm ( Han et al., 2004 ), as implemented in Nighres ( Huntenburg et al.,

018 ). The manual masks were weighted 5 times more than the auto-

atic segmentation algorithms. This "wisdom of the neuroimaging soft-

are crowd"-approach led, in our experience, to much more precise cor-

ical surface reconstructions than using only the MGDM (or any other)
11 
egmentation as input to the CRUISE cortical surface reconstruction al-

orithm. 

After these two pipelines were run, both the pial and white matter

urface meshes of Freesurfer and the levelset representations of CBS-

ools were inspected in FSLEyes ( McCarthy, 2019 ). Any missegmenta-

ions were annotated with manual "correction masks", after which the

ntire preprocessing pipeline was run again, using these manual masks

s additional input. We usually needed 3-4 of these iterations to get

atisfying cortical surface reconstructions. 

When the Freesurfer cortical surface reconstruction was sufficient,

e made 6 additional surfaces between the pial and white mat-

er surface using the "equivolumetric layering" formulas described by

aehnert et al. (2014) as implemented by Konrad Wagstyl in his "Sur-

ace Tools"-package 3 . 

.5.2. Functional preprocessing 

Functional data was minimally processed and extra care was taken

o not smooth the data by resampling the data only once. The prepro-

essing workflow was implemented in nipype ( Gorgolewski et al., 2011 )

nd can be found on GitHub 4 . It was identical for the PRF and ocular

apping paradigm. 

The following steps were performed. First, each run was indepen-

ently motion-corrected using linear rigid-body registration and a nor-

alised correlation cost function towards the mean of the run with

he MCFLIRT algorithm as implemented in FSL ( Jenkinson, 2002 ). The

ame motion-correction was applied to the reverse phase-encoded data.

hen, average images for both time series were constructed, where we

sed only the middle volumes of the task data, such that the unwarp-

ng algorithm would use the same number of volumes for the main task

nd reverse phase-encoded data. These two averages images were bias

eld corrected using N4BiasFieldCorrection ( Tustison et al., 2010 ) af-

er which they were registered towards each other (unwarped) follow-

ng the "TOPUP" unwarping algorithm described by Andersson et al.

 Andersson et al., 2003 ), as implemented in the qwarp program of AFNI

 Cox, 1996 ) using median filtering across 1 mm and a minimum patch

ize of 5 mm. Then, the unwarp field was applied to the averaged task

ata (this time using all volumes in the run), using Windowed Lancos

inc interpolation. 

The averaged task data was then registered to the T1-weighted

T1UNI) anatomical data using the Gray/White-matter segmentation of

GDM as input to the boundary-based registration (BBR) algorithm as

mplemented by FSL’s FLIRT ( Greve and Fischl, 2009 ; Jenkinson, 2002 ),

ith 9 degrees-of-freedom. We chose the 9 degrees of freedom, with ad-

itional scaling across the axes in addition to rigid body transformations,

o allow for some flexibility in correcting any global residual B0 distor-

ions. Then, the MeasureImageSimilarity function of ANTS with a Mutual

nformation cost-function was used to detect which of all the task data

uns that was most similar (registered best) to the T1-weighted data.

his was then used as a ’reference BOLD image’ to which all the other

uns were registered once more. This last step turned out to be helpful,

ince for most subjects 1 or 2 runs were completely misregistered (due

o the very small field-of-view that hinders many automatic registration

lgorithms). Without this step, the alignment between subsequent task

uns was often not sufficient. 

Finally, for every volume of every run, (1) the motion-correction

ffine matrix, (2) the distortion unwarp field, (3) the registration to the

1-weighted anatomical image and (4) the refined registration to the

est-registered reference BOLD image were all concatenated, so that the

esampling of every individual volume in the timeseries to anatomical

pace could be done in one single Windowed Lanzcos Sinc interpolation

https://github.com/kwagstyl/surface_tools
https://github.com/spinoza-centre/spynoza/blob/7t_hires/spynoza/hires/workflows.py
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i  
tep, as implemented in ANTS (2.2.0). This yielded an unsmoothed vol-

me time series at a resolution of 0.7 mm isotropic, very well-aligned

ith the T1-weighted anatomical data. 

We then used the white-matter/gray-matter segmentation of MGDM

o create aCompCorr time series that can be used to regress out spa-

ially correlated structured noise. ACompcorr components are time se-

ies based on projections of raw data on the largest components of a PCA

ecomposition of the signal in an eroded mask of the CSF and white

atter, that is believed to represent structured (physiological) noise

 Behzadi et al., 2007 ). We also extracted the translations and rotations of

he MCFLIRT motion correction ( Friston et al., 1996 ), as well as Frame-

ise Displacement ( Power et al., 2012 ) and DVAR ( Power et al., 2014 ;

myser et al., 2010 ). The functional data were also high pass-filtered by

ubtracting the output of a Savitzky-Golay filter with a polynomial or-

er of 3 and a window length of 120 s ( Savitzky and Golay, 1964 ). The

esulting time series were then divided by the average image intensity

f the corresponding voxels and divided by 100, to get a "percent signal

hange" time series. 

For the purpose of fitting the PRF model, we then sampled the raw

OLD time series to surfaces vertices by taking the mean across all corti-

al depths for the PRF model using the mri_vol2surf function of Freesurfer

 Dale et al., 1999 ) and using trilinear interpolation. 

.5.3. PRF fitting 

For fitting the PRF model, we sampled vertex-wise time series across

he entire depth of the vortex. We did so because the retinotopic lo-

ations of neurons at the same 2D cortical location across cortical

epth are very similar ( Fracasso et al., 2016 ) and it allowed us to pool

ata across voxels, increasing the signal-to-noise ratio and the qual-

ty of the estimates of the retinotopic location of different 2D loca-

ions in V1. To further increase the signal-to-noise ratio of the data,

e also linearly projected the DVAR time series, the Framewise Dis-

lacement, translation and rotation-parameters from the motion correc-

ion, as well as 6 anatomical CompCorr-components out of the raw sig-

al ( Power et al., 2014 ). Then, we estimated a standard Gaussian PRF

odel ( Dumoulin and Wandell, 2008 ) with 3 parameters: angle and

ccentricity (equivalent to x/y-coordinate of the Gaussian) and a size

standard deviation of the Gaussian). We used the popeye Python pack-

ge ( DeSimone et al., 2016 ) to construct hypothetical time series for a

arge range of parameters (25 eccentricities x 32 angles x 25 sizes). We

hen correlated these hypothetical time series with the actual time se-

ies for every vertex, sampled across its entire depth and took for every

ertex the parameter settings with the highest correlation. This "grid

earch" approach already yielded a relatively coarse retinotopic map of

1, which were used as a starting point for a gradient descent optimiza-

ion algorithm as implemented in PopEye ( DeSimone et al., 2016 ). The

esulting parameters were then plotted back onto the surface using Py-

ortex ( Gao et al., 2015 ). We used an (arbitrary) R2 threshold of 15%

ithin-set explained-variance explained to mask out very noisy vertices.

hen, we manually delineated the left and right V1/V2-border on the

olar angle maps of every individual subject. The borders of V1 and V2

ere defined by visual angle phase reversals at the dorsal (lower vertical

eridian of the visual field) and ventral (upper vertical meridian of the

isual field) banks of the calcarine sulcus ( Wandell and Winawer, 2011 ).

.5.4. Estimation of ocularity maps 

To estimate ocular dominance of cortical locations, we estimated a

imple general linear model (GLM) using nistats ( Nistats 2019 ) on the

reprocessed, voxelwise time series. The GLM consisted of one regres-

or representing stimulation of the left eye, convolved with a standard

RF, and a second regressor represented stimulation of the right eye,

onvolved with a canonical HRF. We also added 6 nuisance regressors,

hich were the 6 components that explained most variance of a prin-

ipal component (PCA) decomposition of all the 14 collected nuisance

egressors: volume-wise DVAR, framewise displacement, six translation

nd rotation parameters provided by the motion-correction algorithm,
12 
s well as six anatomical CompCorr-regressors. We opted for this PCA-

pproach because the nuisance regressors were highly correlated, and

he total number of volumes (degrees-of-freedom) of the ODC data was

ow due to our 4-second TR. 

We then fit parameter estimates for the average BOLD activation for

eft and right eye stimulation, as well as the contrast for left > right eye

timulation for every run separately, as well as over all runs combined.

hese parameter estimates were normalized for their variance, resulting

n corresponding z-maps. 

We then used the cortical depth estimates for every voxel provided

y the CRUISE cortical surface level sets ( Bazin et al., 2014 ; Han et al.,

004 ; Huntenburg et al., 2018 ) to assign voxels to 5 bins of equivol-

metric cortical depth. We used those bins to estimate the effects of

ortical depth on the height of the BOLD response in different task con-

itions, as well as its interaction with stimulation condition and/or at-

entional condition. We also applied the linear laminar deconvolution

pproach developed by Marquardt and colleagues ( Markuerkiaga et al.,

016 ; Marquardt et al., 2018 ). Here, the activation of 5 different bins

as modeled as a linear combination of 5 underlying neural popula-

ions. For example, the BOLD response at deepest layer is assumed to be

 result of BOLD activation due to neural activation only in the deepest

ayers, whereas the 2nd-to deepest layer is assumed to be a linear sum

f both BOLD responses to the neural activity in the deepest layer and

he 2nd-to-deepest layer, etc. 

The "left > right" contrast z-map was also sampled to 6 equivolu-

etric cortical surfaces as defined by Freesurfer. This was done for the

nalysis of the spatial frequency of the ocularity profiles on the corti-

al surface, as well as to gauge the consistency of the ocular dominance

olumns within subjects across runs. To not induce any spatial smooth-

ng, nearest neighbor interpolation was used for this final interpolation

tep. 

After estimating the z-maps, they were visually inspected on the sur-

ace, with the V1/V2-masks overlaid. All z-maps were visually consistent

ith ocular dominance column patterns: except for one hemisphere in

ne subject, they showed relatively large changes in z-value (2–4) over

elatively short amounts of geodesic distance (~1.5 mm). The left hemi-

phere of subject 1, however, showed a very large right-sensitive blob of

ctivity in parafoveal V1. Since these patterns did not qualitatively align

ith ocular dominance patterns, this hemisphere was excluded from all

urther analyses. This is why in almost all analysis there was one more

ight hemisphere than left hemispheres. After visual inspection of the

-maps, we tested them for robustness by correlating the z-map of the

rst half of the session with the second half of the session. For one sub-

ect (subject 5), we found no consistent pattern. Both hemispheres of

his subject were excluded from all further analyses. 

.5.5. Spatial frequency estimation on the surface 

To estimate the spatial frequency of the ocularity maps, we applied

D Gabor filters ( Forsyth and Ponce, 2015 ) to the ocularity maps after

esampling them to a flattened cortical surface. We used Freesurfer’s tk-

urfer to cut out V1 from the rest of cerebral cortex and used Freesurfer’s

attening algorithm ( mris_flatten ) to convert the 3D vertex coordinates

o 2D plane coordinates, minimizing any distortions in their distance

atrix. We then resampled the ocularity z-maps from their flattened

D coordinates to a gridded plane with a resolution of 0.35 mm using

inear interpolation. We then convolved this plane with Gabor patches

ith a frequency ranging from 1 mm/cycle up to 10 mm /cycle in 50

ogarithmically spaced steps and 16 equally space orientations. Then,

or every vertex, this yielded an estimate of its power for a specific fre-

uency and orientation. We assigned a "main frequency" to every vertex

y finding the frequency with the maximum amount of power, summed

ver all orientations. We then plotted the distribution of main frequen-

ies across vertices and estimated its mode (most common frequency).

e repeated this procedure across multiple cortical depths, so we could

nvestigate any shift in main frequency and power across cortical depth.
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.5.6. Inverted encoding model 

To estimate the amount of information that the entire pattern of ac-

ivity in V1 contained, we used an adaptation of the inverted encoding

odel described by van Bergen et al. ( van Bergen et al., 2015 ). Spe-

ially we assumed that the BOLD acitvity in each vertex in V1 could be

xplained by a weighted sum of a "left eye" and "right eye" neuronal pop-

lation. This weight matrix W (as many rows as vertices and 2 columns

one column represent the left eye, the other the right eye-) was esti-

ated by solving the linear system 

 𝑖 = 𝑊 𝑖 𝑋 

Where 𝑌 𝑖 is the time course in vertex i and X is a design matrix with

wo columns, indicating which eye was stimulated at a given frame (ei-

her 0 or 1, shifted by 4 s in time to correct for hemodynamic delay). To

egularize the weights matrix, we used ridge regression with a prefixed

lpha-parameter of 1.0 ( Hoerl and Kennard, 1970 ; Nunez-Elizalde et al.,

019 ), corresponding to a Gaussian prior with standard deviation of 1

n the weights. This regularizes the found weights towards more plau-

ible values near 0. 

Using the fitted weight matrix of the vertex-wise GLM, we fitted a

egularized multivariate normal to the unexplained residuals 𝑌 𝑖 − 𝑊 𝑖 𝑋: 

∼ 𝑁 ( 0 , Σ) 

Where the covariance matrix Σ was defined as a weighted sum

eighted of the diagonal covariance matrix 𝐼◦𝜏𝜏𝑇 and a perfect cor-

elation matrix 𝜏𝜏𝑇 ( Ledoit and Wolf, 2003 ), as well as the estimated

ariance of the neural populations, 𝜎2 (van ( van Bergen et al., 2015 ),

nd finally the empirical covariance matrix Σ𝑠𝑎𝑚𝑝𝑙𝑒 (van ( van Bergen and

ehee, 2019 ): 

= 𝜆
(
𝜌𝜏𝜏𝑇 + ( 1 − 𝜌) 𝐼◦𝜏𝜏𝑇 + 𝜎2 𝑊 𝑊 

𝑇 
)
+ ( 1 − 𝜆) Σ𝑠𝑎𝑚𝑝𝑙𝑒 

= 𝜆
(
𝛼𝑒𝑥𝑝 ( − 𝛽𝐷 ) + 

(
( 𝛼 − 1 ) 𝜌𝜏𝜏𝑇 + ( 1 − 𝜌) 𝐼◦𝜏𝜏𝑇 + 𝜎2 𝑊 𝑊 

𝑇 
))

+ ( 1 − 𝜆) Σ𝑠𝑎𝑚𝑝𝑙𝑒 

The weight matrix W was estimated with ridge regression (see

bove), 𝜆 represents the amount of regularization and was set to 0.9

ased on cross-validation (performance gains compared to 𝜆 of 0.1, 0.5

r 1.0 depended on the amount of vertices used, but were in the order

f 5% percentage point classification accuracy), Σ𝑠𝑎𝑚𝑝𝑙𝑒 is directly es-

imated from the data (cross product of data matrix) and 𝜌, 𝜏, and 𝜎2 

re optimized using gradient descent . We implemented the model in

ensorflow ( Abadi et al., 2016 ), which calculated the gradients of the

arameters with respect to the parameters automatically ( Bartholomew-

iggs et al., 2000 ; Corliss et al., 2002 ), thereby drastically improving the

peed of the optimization process. To further speed up the optimization

rocess, we selected a subset of 400 vertices in the V1 mask that showed

he highest explained variance (R 

2 ) in the GLM to be used for the resid-

al model. 

After fitting the residual model, we estimated the maximum-a-

osteriori (MAP) stimulus for unseen data D by inverting the likelihood

odel using an informed stick prior that only allowed either activation

f the left eye with 1 or the activation of the right eye with 1: 

 ( 𝑠 |𝐷 ) ≃ 𝑝 ( 𝑠 |𝐷 ) 𝑝 ( 𝑠 ) 

here 

 ( 𝑠 |𝐷) = 𝑁( 𝑌 − 𝑊 𝑋, Σ

We then used the (log) Bayes Factor of the probability of a left versus

ight eye stimulation as a measure of decoded-eye and its uncertainty: 

 𝑜 𝑔 10 
(
𝐵 𝐹 𝑙𝑒𝑓 𝑡 𝑣𝑠 𝑟𝑖𝑔ℎ𝑡 𝑒𝑦𝑒 

)
= 𝑙 𝑜 𝑔 10 

( 

𝑃 ( 𝑠 = [ 1 , 0 ] | 𝐷) 
𝑃 ( 𝑠 = [ 0 , 1 ] | 𝐷) 

) 

The log 10 (BF) represented the logarithm of the odds that the left

r right eye was stimulated. When log 10 (BF) was above 0, the model

redicted left eye stimulation, whereas if log 10 (BF) was below 0, the

odel predicted right eye stimulation. 
13 
We used a two-leave-out cross-validation scheme: For every fold, two

uns were left out for validation purposes: one run with attention on the

xation cross and one run with attention on the checkerboard. 

.5.7. Linear versus quadratic model estimation 

For two variables, namely total spectral power and decoding accu-

acy, we wanted to see if they increased or decreased linearly with cor-

ical depth, or that they showed a clear peak at a specific cortical depth.

o do this, we performed Bayesian model comparison. Specifically,

e fitted two hierarchical linear model using pymc3 ( Salvatier et al.,

016 ) and its implementation of the NUTS sampler ( Hoffman and Gel-

an, 2014 ). 

The dependent variable (decoding accuracy and spectral power) was

rst modeled as a linear function of cortical depth: 

 𝑛 = 𝜃𝑛, 0 + 𝜃𝑛, 1 𝑑 𝑛 

nd then also as a quadratic function of cortical depth 

 𝑛 = 𝜃𝑛, 0 + 𝜃𝑛, 1 𝑑 𝑛 𝜃𝑛, 2 𝑑 
2 

Where 𝑦 𝑛 were all observations for subject 𝑛 , 𝑑 is a corresponding vec-

or of cortical depths and 𝜃𝑛 is the parameter vector for subject 𝑛 that was

stimated. 

The subject-wise parameters were modeled as coming from a Gaus-

ian group distribution mean 𝜇 and standard deviation 𝜎: 

∼ 𝑁 ( 𝜇, 𝜎) 

∼ 𝑁 ( 0 , 1 ) 

∼ 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦 ( 5 ) 

We used the state-of-the-art Watanabe–Akaike information criterion

o do Bayesian model comparison between the linear and quadratic

odels ( Gelman et al., 2014 ; Watanabe, 2013 ). Furthermore we, es-

imated the posterior of the peak of the quadratic function using the

ormula 
− 𝜃3 
2 𝜃2 

and calculated its 95% confidence interval using the high-

st posterior density approach ( Kruschke, 2014 ). 

We collected 4 chains of 2000 samples each, after 1000 tuning

"burn-in") steps. 
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