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A B S T R A C T

Studies that aim to understand the neural correlates of response conflicts commonly probe frontal brain areas
associated with controlled inhibition and decision processes. However, untimely fast conflict errors happen even
before these top-down processes are engaged. The dual-route model proposes that during conflict tasks, as soon
as the stimulus is presented, two early processes are immediately at play. The task-relevant and task-irrelevant
processes generate either compatible responses, when all stimulus features align, or incompatible responses,
when stimulus features are in conflict. We aimed to find a neural substrate of these two processes by means of
relating the quality of the representation of stimulus features in visual and somatosensory brain areas to re-
sponses in conflict tasks. Participants were scanned using fMRI while performing somatosensory and visual
Simon tasks. The fMRI data were then analysed using a MVPA in early visual and somatosensory cortices. In
agreement with our hypotheses, results suggest that the sensory representation of the task-relevant and task-
irrelevant features drive erroneous trials. These results demonstrate that traces of response conflicts can arise
already in sensory brain areas and that the quality of the representations in these regions can account for an
early response capture by irrelevant stimulus features.

1. Introduction

A cognitive conflict is an information mismatch stemming from
incompatible or opposing stimulus features. For example, in the Stroop
task (Stroop, 1935), a participant is asked to name the ink-colour of a
colour-word. Responses slow down, and errors are more common, when
the task-relevant ink colour and task-irrelevant word identity are in-
compatible. Moreover, as was observed in a large variety of conflict
tasks, fast incompatible trials are more prone to errors, as compared to
slow or compatible trials (Stroop task: Dittrich and Stahl, 2017; Flanker
task: Coleman et al., 2017; Simon task: Wylie et al., 2009; masked
priming task: Ellinghaus and Miller, 2017). The underlying process that
drives these fast errors is regarded as early response capture by irrele-
vant information (van Maanen et al., 2015). In the Simon task, a classic
stimulus-response conflict task, participants are typically asked to
identify a figure, and response with a left or right key-press accordingly.
The spatial location of the stimulus, displayed left or right of a fixation,
is task-irrelevant. Nevertheless, participants respond faster and more
accurately when the appropriate key spatially matches the stimulated
side (i.e., congruent condition) than when it does not (i.e., incongruent
condition). The activation of the response system by the task irrelevant

stimulus location is represented in the plot of accuracy as function of
response time (i.e., conditional accuracy function, CAF), by the near-
asymptote accuracy of congruent responses, but low accuracy in the fast
portion of incongruent responses (Forstmann et al., 2008b;
Ridderinkhof, 2002a).

The present study proposes a means to trace the neural correlates of
early response capture based on a structural model developed for the
studying of stimulus-response conflicts, the dual-route model (De Jong
et al., 1994; Ridderinkhof, 2002b). In the dual-route model it is as-
sumed that two processes take place in parallel (Fig. 1). One process
refers to a task-relevant indirect route that processes the deliberate
response decision based on task demands. The other process refers to a
task-irrelevant route, where the spatial code directly activates a re-
sponse that corresponds with the relative location of the stimulus
(Kornblum et al., 1990). In the congruent condition, both task-relevant
and irrelevant dimensions of the stimulus generate the same response.
In the incongruent condition, the irrelevant response contradicts the
correct response because the stimulus onset automatically primes the
spatially corresponding however incorrect response. The present study
aimed to investigate the perceptual aspect of the early response process,
to trace the neural correlates of early response capture in sensory brain
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areas that code for the relevant and irrelevant stimulus features, which
are later expressed as the wrong response.

Within the framework of the dual-route model we propose that the
strength of the stimulus’ features representations in sensory areas
should account for response behaviour. The strength of the relevant and
irrelevant stimulus feature representations will drive, at least to some
extent, the influence of the relevant and the irrelevant route on the final
response (Salzer et al., 2017). If a stimulus feature is more or less
sharply encoded, this will offer more or less reliable information to
downstream decision-forming areas. By reverse inference, we formulate
three concrete predictions (Fig. 1.b). (A) In both congruent and in-
congruent trials, relevant feature representations will be stronger on
correct trials relative to incorrect trials. Secondly, with congruent trials,
relevant and irrelevant features align and activate the same response-
code, facilitating the correct response. We assume that the infrequent
congruent errors are driven by noise that originates from stochastic or
external processes that are not explicitly described by the dual-route
model. It is likely for noise to drive an error when the aligned relevant
and irrelevant features in a congruent trial are represented very noisily,
resulting in a lapse. Thus, (B) the strength of the irrelevant feature re-
presentation should on average be higher during correct congruent
trials compared to erroneous congruent trials. Finally, (C) higher ac-
tivity in the irrelevant route, during incongruent trials, is expected to
increase the likelihood of early response capture (Ridderinkhof, 2002b)
yielding incorrect responses. Thus, the irrelevant spatial feature re-
presentation will be stronger on incorrect incongruent trials, relative to
correct incongruent trials.

2. Material and methods

Our predictions were tested in a functional magnetic resonance
imaging (fMRI) experiment. To quantify the strength of the stimulus
feature representation in the brain, multivariate pattern analysis
(MVPA) was used. MVPA is a neuroimaging analysis approach which
trains a model of how stimulus features are encoded in the brain using
supervised learning. The trained model can then be used to quantify the

encoding of stimulus features in previously unseen data on a trial-by-
trial basis (Haxby et al., 2014; Kriegeskorte, 2011). We applied MVPA
during visual and somatosensory Simon tasks. In a typical visual Simon
task, the participant is asked to identify a visual image presented to the
left or right of a fixation cross (Forstmann et al., 2008b). In a somato-
sensory Simon task, the participant is asked to identify a vibrotactile
pulsation presented on an area located on the left or right side of the
body (Salzer et al., 2014). Typically, the participant is asked to make a
decision by pressing a button with the left or right hand. The partici-
pant is expected to ignore the spatial location of the stimulus, since it is
irrelevant to the task-at-hand. Nevertheless, on trials in which the sti-
mulus is positioned contralateral to the correct response, the participant
is usually slower and more likely to make fast errors (Duprez et al.,
2016; Houvenaghel et al., 2016; Salzer et al., 2014; Wylie et al., 2009).

In an exploratory first fMRI study, we used a comparable experi-
mental design, however, with some crucial differences in both the vi-
sual and tactile domain (please see supplementary materials for design
and results). This study and results helped us to gain insights in the
effect size of the manipulations. In the second fMRI experiment re-
ported here, we revised the experimental setup in such a way as to
allow for a conceptual replication while increasing the effect size.

2.1. Participants

Thirty-three healthy participants were scanned. Data of five parti-
cipants was not analysed due to technical failure in the scanner or
during data transfer. All remaining 28 participants (14 females; 24.9
mean age, std. age 6.9, range 19 – 46) had normal or corrected to
normal vision and no history of neurological or psychological disorders.
The study was approved by the local ethical committee of the
University of Amsterdam, The Netherlands. All participants gave
written informed consent and received monetary reward for their par-
ticipation.

Fig. 1. [a] Dual-route model. [b] Predicted magnitude of relevant and irrelevant feature representation as function of congruency and correctness of response are
illustrated in left and right panels, respectively.
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2.2. Experimental design and statistical analysis

2.2.1. Procedure
The participants first performed a practice session of 16 visual

Simon trials and 16 somatosensory Simon trials in a preparation room,
after which they were screened for MRI. While scanning, they per-
formed 208 trials of a visual Simon task, and 208 trials of a somato-
sensory Simon task, divided over 8 runs consisting of 52 trials each.
Each run lasted 5:08min. The order of modality was counterbalanced
across participants. Trial length varied between 4, 4.5, 5, 5.5, 6, 6.5, 7,
7.5 and 8 s. A trial started with a black fixation cross for 300ms, fol-
lowed by a second red fixation cross for another 300ms. After the
second fixation cross, the target stimulus was presented for 450ms. To
probe for errors in both congruent and incongruent conditions, parti-
cipants were encouraged to respond as fast as possible. If a response
was not recorded within 500ms (visual) or 750ms (somatosensory)
from onset of the stimulus, a “too slow” message appeared on screen for
1500ms. At the end of each trial, a black cross was presented during the
remainder of the fixed trial time. The participant was instructed to
fixate at the cross, however their gaze was not monitored.

The somatosensory target stimulus, generated by piezoelectric vi-
bratory stimulator (custom made by Mag Design and Engineering,
Redwood City, CA, USA), was a 250-Hz vibration of either a single
continuous 450ms pulse (i.e., continuous stimulus) or a fast sequence
of three equally spaced 75ms pulses with a total duration of 450ms
(i.e., intermittent stimulus). Two piezoelectric vibrotactors were at-
tached to the back of the left and right hands. An equal number of
intermittent and continuous stimuli were introduced in each run, acti-
vated by either right or left vibrotactor (Fig. 2). The visual target sti-
mulus was a black-and-white image of a house or a face. An equal
number of houses and faces were introduced in each run, to the left or
right of the fixation cross. Participant’s hands rested on left and right
response boxes, index fingers placed on the response keys. The mapping
of (continuous/intermittent, house/face) to response key (left/right)
was fully counterbalance across participants. The instructions were
displayed on screen before each run.

2.2.2. MRI scanning protocol
The experiment was carried out on a Philips 3.0T Achieva whole-

body MRI scanner (The Netherlands). A T2*-weighted EPI sequence was
used to measure the BOLD signal, with a 32-channel head coil. The
order of imaging acquisition was ascending, covering the whole brain of
participants. For each functional volume, 43 slices were collected re-
sulting in a 2.5 mm isotropic resolution over a 96 × 94 voxel matrix
(TR = 2500.001ms, TE = 27.6 ms, and FA = 77.2°). Prior to the
functional runs, a 3-D, high-resolution, T1-weighted whole-brain image
was acquired (1 × 1 × 1 mm3, TR = 8.506, TE = 3.93 FA = 8°). To
correct for field inhomogeneity, a corresponding B0 field map scan of
128 slices was also acquired (3 × 3 × 3 mm3, TR = 10.964ms, TE
echo = 3.07ms, delta TE = 5ms, FA = 8°). Visual stimuli were pre-
sented to the participants on a back-projection screen, which could be
viewed via a mirror system attached to the MRI head coil.
Somatosensory piezoelectric actuators were attached by adjustable

Velcro strips to the back of the participant’s hands.

2.2.3. Pre-processing
The data were corrected for inhomogeneity in the main magnetic

field (B0), using the acquired B0 field map and the FUGUE procedure as
implemented in FSL (Jenkinson, 2004; Jezzard and Balaban, 1995). The
data was processed using the standard FSL FEAT pre-processing pipe-
line (Smith et al., 2004; Woolrich et al., 2009), as implemented in the
NiPype fMRI pipeline framework (Gorgolewski et al., 2011). This pi-
peline motion-corrects the data using the MCFLIRT algorithm, and
smooths the data at full-width-half-maximum (FWHM) of 5mm using
the SUSAN algorithm. Brain Extraction Tool (FSL BET) was used on
individual anatomical scans (Smith, 2002). All functional datasets were
individually registered to the individual participant high-resolution
anatomical images using FSL FLIRT.

2.2.4. Univariate analysis
Two general linear models were fitted to the MRI data in a mas-

sively univariate fashion (Worsley and Friston, 1995). In the first
model, congruency (congruent, incongruent) and task-irrelevant fea-
ture, the stimulus side (left, right), as well as outlier motion parameters,
and were used as predictors. In the second model, congruency (con-
gruent, incongruent) and task-relevant feature (visual: house, face; so-
matosensory: intermittent, continuous), as well as outlier motion
parameters were used as predictors. Contrast maps were generated for
each participant. Next, to perform group analysis, the individual con-
trast maps were normalized toward MNI space by linear and subsequent
non-linear transformation using ANTS. Higher-level analyses were
carried out using FSL’s FLAME. For the whole-brain analysis we only
report regions with a voxel-wise threshold of z > 3.1 and a cluster-
wise threshold of p < .05, using GRF theory as implemented in FSL’s
cluster.

2.2.5. Multivariate pattern analysis
The aim of the multivariate pattern analysis (MVPA) in the present

study was to generate, for each trial, a proxy for the activation strength
of task-relevant and task-irrelevant features in the brain. To train the
multivariate classifier, voxel-wise and trial-wise BOLD amplitude values
were required. These were estimated using general linear model with
one separate regressor for every trial (Mumford et al., 2012).

For each modality, two classifiers were constructed (Fig. 3.a). One
classifier was trained for the task-relevant feature (visual: houses versus
faces; somatosensory: intermittent versus continuous); the other clas-
sifier was trained for the irrelevant feature (left versus right). To select
voxels containing useful activity patterns for the classifier analyses
(feature selection), regions-of-interest were defined by a conjunction or
disjunction of anatomical structures, as well as those voxel that were
found to be active in response to specific task conditions. The regions of
interest were defined for each of the classifiers in the following manner.
For the somatosensory task-irrelevant region of interest, a higher-level
analysis was performed using FLAME to generate statistical contrast
maps of left versus right, and right versus left stimulus side. Cortical
regions with threshold z > 2 were set to a binary value of 1, otherwise

Fig. 2. Timeline of somatosensory (top) and visual (bottom) Simon task trials.
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0. Left versus right and right versus left stimulus side contrasts were
summed, and then multiplied with a binary anatomical mask of the
primary and secondary somatosensory cortices. Only voxels shared by
the sum of the contrasts and the anatomical mask were left in for the
somatosensory task-irrelevant region of interest. This was done to en-
sure that the search pattern of voxel activity associated with the pre-
sentation of spatial information was not contaminated with activity
associated with the motor cortex. The somatosensory task-relevant re-
gion of interest was constrained by anatomical masks of the primary
and secondary somatosensory cortex (Jülich Histological Atlas, Eickhoff

et al., 2005, Fig. 3.b) which were then transformed to the individual
functional space of each participant.

A Higher-level analysis using FLAME was applied to generate sta-
tistical contrast maps of house versus face, and face versus house con-
ditions. Cortical regions with threshold of z > 2 were set a binary
value of 1, otherwise 0. The binary anatomical mask of V1 to V5 was
subtracted from the house versus face contrast, leaving out voxels as-
sociated with early-visual processing, but leaving in voxels associated
with object representation in the ventral temporal cortex. The house
versus face, and face versus house contrast masks were summed to

Fig. 3. Multivariate pattern analysis (MVPA) of visual (left) and somatosensory (right) datasets. For each dataset, two classifiers were trained to predict the task-
relevant (top) and task-irrelevant (bottom) features, in the following manner: [a] classifier’s categories were defined, and [b] region of interest was outlined. The
SVM classifier [d] was trained on one subset of trials [c], i.e., training set. An n-dimensional decision boundary was defined [e]. Then the SVM classifier was tested on
the other subset of trials, i.e., the testing set. Finally, the distance from the boundary [e], i.e., hyperplane distance, served as a proxy for the quality of the feature
representation in the predefined region of interest.
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create the region of interest of the visual task-relevant classifier. For the
task-irrelevant feature, namely stimulus side (left or right), the data set
was separated into two data-sets: house trials and face trials. House
task-irrelevant classifiers (i.e., trained to detect whether a house ap-
peared on the left vs. right side of the screen), and face task-irrelevant
classifiers (i.e., trained to detect whether a face appeared on the left vs.
right side of the screen) were trained and tested independently on the
respective data set. The region of interest for house trials was defined
by the house versus face mask, and region of interest for the face trials
was defined by the face versus house mask. This approach allowed to
explore the pattern of activity associated with spatial representation
(left or right) within the region of voxels that demonstrated high acti-
vation in response to the stimulus type (house or face) in question.

To avoid circular analysis (Kriegeskorte et al., 2009), each of the
high-level contrasts needed for the masks, was generated 28 times, once
for each participant. Each time, a contrast map of one participant was
excluded from the group analysis (i.e., leave-one-out by participant).
This way, each participant had its own individual mask, which was
constructed from the group’s brain activity that did not include its own.
Once the masks were completed they were transformed back to the
individual’s functional space.

For each participant and modality, a support vector machine (SVM)
(Bishop, 2006) classifier was trained on three of the four runs (Fig. 3.c,
d). The fourth run was used to test how well the classifier could predict
held-out data (i.e., leave-one-out by runs). For each participant, this
process was repeated 16 times: for each modality dataset (visual, so-
matosensory), for each of the four runs, and for each of the classes of
classifiers (task-relevant, task-irrelevant). This way, for each trial, in
each modality, two binary scores were collected, indicating whether or
not the classifiers were successful in predicting the location and the
identity of the stimulus presented in the trial.

Finally, for each trial, two continuous values were collected: how far
the pattern of activity on the trial was from the task-relevant classifier’s
n-dimensional decision boundary (i.e., hyperplane distance), and how
far the pattern of activity of the trial was from the task-irrelevant
boundary (Fig. 3.e). The hyperplane distance was positive for trials that
were identified as left/houses/continuous, and negative for trials
identified as right/faces/intermittent. For the statistical analyses, the
hyperplane distances were pooled together, after changing the sign of
the hyperplane distance towards the left/houses/continuous such that
positive values correspond to correct identification and negative values
to incorrect identification. These hyperplane values served as a proxy
for the quality of the representation of these features in sensory brain
areas. A larger distance is associated with a strong representation of the
feature in the brain (Raizada et al., 2010). A smaller (or negative)
distance is associated with a weak feature representation. Finally, re-
peated measures analysis of variance (ANOVA) and Bayesian ANOVA
(Morey et al., 2015; Rouder et al., 2012) were computed for hyperplane
distances with correctness of response and congruency as factors, to test
the following predictions (Fig. 1.b): (A) the hyperplane distance of task-
relevant feature is larger in correct than incorrect trials, in both con-
gruent and incongruent trials; (B) Hyperplane distance of the task-ir-
relevant feature is larger in correct than incorrect congruent trials; And,
(C) the hyperplane distance of the task-irrelevant feature is smaller in
correct than incorrect incongruent trials.

3. Results

3.1. Behavioural Analysis

The analyses of variance focused on the main effects of congruency
on accuracy and response time (Fig. 4). None of the dependent variables
systematically depended on the trial length, therefore it was not in-
cluded in the main analyses. In the visual task, only four participants
made no errors in the congruent condition, and only one participant
made no errors in the incongruent condition. In the somatosensory task,

only two participants made no errors in the congruent condition. The
difference in accuracy of congruent and incongruent conditions was
significant in the somatosensory Simon task (congruent M = 95%, SD
= 4.7%, incongruent M= 87.6%, SD= 9.6%), [F(1, 27) = 20.41, MSE
=0.003, p=0.000111, and BF10 =453], as well as in the visual Simon
task (congruent M = 93.1%, SD = 5.8%, incongruent M = 77.26%, SD
= 12.9%), [F(1, 27) = 39.32, MSE =0.009, p=0.000001, BF10
=596726]. Main effects were found for response time in the somato-
sensory Simon task [F(1, 27) = 66.55, MSE =240, p=9 × 10−9, BF10
=572873], as well as in the visual Simon task [F(1, 27) = 52.77, MSE
=377, p=8 × 10−8, BF10 =88364], suggesting that the responses in
the congruent condition were significantly faster than responses in the
incongruent condition (somatosensory: congruent M = 490ms, SD =
58ms; incongruent M = 524ms, SD = 61ms; visual: congruent M =
356ms, SD = 39ms; incongruent M = 394ms, SD = 54ms).

Conditional Accuracy Functions (CAF) were calculated for each
participant, task, and congruency condition. RTs were partitioned into
four quantiles or proportional bins (Fig. 4.c). Mean accuracy was cal-
culated for each quantile. Two-way ANOVA was conducted for con-
gruency and quantile. A significant two-way interaction was found in
the visual task [F(3, 81) = 61.51, MSE =0.013, p < 2 × 10−16, and
BF10 > 10+6]. Simple planned-comparison suggest a significant dif-
ference of 0.51 in mean accuracy between congruent and incongruent
conditions in the first quantile [F(1, 27) = 76.76,MSE=0.047, p=2.2
× 10−9, and BF10 > 10+6], and a significant difference of 0.16 in
mean accuracy in the second quantile [F(1, 27) = 16.7, MSE =0.02,
p= .000352, and BF10 > 10+6]. In the somatosensory task, the two-
way interaction was significant [F(3, 81) = 17.18, MSE =0.004,
p=1.01 × 10−8, and BF10 =529116]. Simple planned-comparison
suggest a significant difference of 0.18 in mean accuracy between

Fig. 4. Behavioural results. [a] Mean response time, [b] accuracy, and [c]
conditional accuracy function (CAF), as a function of modality and congruency.
Error bars denote confidence interval of 95%.
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congruent and incongruent conditions in the first quantile [F(1, 27)
= 31.05, MSE =0.016, p=6.57 × 10−6, and BF10 =743532] and a
significant difference of 0.05 in mean accuracy between congruent and
incongruent conditions in the second quantile [F(1, 27) = 7.19, MSE
=0.004, p=0.0123, and BF10 =745696].

3.2. Neuroimaging data

3.2.1. Univariate analysis
For comparison of task conditions—congruency, stimulus type, and

stimulus side—high-level contrasts were produced with all 28 partici-
pants. Cortical regions with a threshold of z > 3.1 and a cluster
probability of p < 0.05, corrected for whole-brain multiple compar-
isons (using GRF theory), are reported in Table 1. The contrast of in-
congruent versus congruent trials yielded no significant clusters, nei-
ther in the visual, nor in the somatosensory modality (for similar results
see Forstmann et al., 2008a, 2008b; Strack et al., 2013, however, see
Liu et al., 2004 and Peterson et al., 2002 for significant findings).

3.2.2. Multivariate pattern analysis
Mean accuracy scores of the visual task-relevant SVM classifier

(0.59) was significantly different from chance [(t(27)=11.11, p=1.4
× 10−11, BF10 > 10+6)]. Mean accuracy scores for visual house task-
irrelevant classifier (0.59) and face task-irrelevant classifier (0.53) were
significantly different from chance [t(27) =8.51, p=3.9 × 10−9,
BF10 > 106 and t(27) =2.78, p=0.0097, BF10 =4.71, respectively].
Mean accuracy score of the somatosensory task-irrelevant classifier
(0.52) and somatosensory task-relevant classifier (0.54) were sig-
nificantly different from chance [t(27) =3.13, p=0.00414, BF10
= 9.77, and t(27) =4.44, p=0.000135, BF10 =200, respectively].

Bayesian ANOVA was applied for hyperplane distances, relevant
and irrelevant, in the visual and somatosensory modalities as a function
of congruency (congruent, incongruent) and correctness of response
(correct, incorrect) as fixed effects, and participants as random effects.
None of the dependent variables systematically depended on the trial
length, therefore it was not included in the main analyses. Table 2
provides detailed statistics. In what follows we will focus on the specific
predictions introduced before.

3.2.2.1. Relevant feature representation. In line with the first prediction,
a main effect for correctness of a trial was found in the somatosensory
dataset, and a subset of the visual dataset, namely for the house stimuli
but not for the face stimuli of the visual dataset. Concretely, the
hyperplane distance of the relevant feature was larger for trials in
which correct responses were given, as compared to those in which
incorrect responses were given, as seen in Fig. 5 (somatosensory:

correct M = 0.034, SD = 0.043, incorrect M = −0.029, SD =
0.158; visual-house: correct M = 0.09, SD = 0.09, incorrect M =
0.019, SD = 0.19; visual-face: correct M = 0.06, SD = 0.1, incorrect M
= 0.039, SD = 0.158). The evidence acquired by the face subset of the
visual dataset was inconclusive, suggesting more data needs to be
collected to verify or falsify our theory. Main effects for congruency,
and the interactions between congruency and correctness, were not
significant in either of the modalities (see Table 2).

3.2.2.2. Irrelevant feature representation. In line with the second
prediction, the two-way interaction between congruency and
correctness in the somatosensory dataset was significant, with
evidence strongly in favor of the interaction model (Table 2).
Concretely, the hyperplane distance of the irrelevant feature in the
correct incongruent condition (M = −0.001, SD = 0.042) was smaller
than the hyperplane distance in the incorrect incongruent condition (M
= 0.078, SD =0.146). As expected from the third prediction, the
hyperplane distance for the irrelevant feature for the correct congruent
condition (M = 0.038, SD = 0.047) was larger than the hyperplane
distance for the incorrect congruent condition (M = −0.038, SD =
0.203), as seen in Fig. 5. No interaction or main effects were found in
either of the subsets of the visual dataset. The data acquired in the
visual dataset provide inconclusive evidence for both of the hypotheses,
suggesting more data needs to be collected to verify or falsify our
theory. To summarize, findings in the somatosensory dataset, and to
some extent in the visual dataset, support the view that sensory areas
code for response capture.

4. Discussion

The neural processes that underlie encoding and resolution of con-
flicting information in the human brain remain elusive. While most
studies describe the neural correlates of controlled inhibition (Duncan,
2001; Ridderinkhof et al., 2004; Stocco et al., 2017) and decision
processes (Gold and Shadlen, 2007; Mulder et al., 2014), the present
study focused on the early phase of sensory information encoding. This
study presents an exciting modus operandi to answer the issue at hand:
what are the neural origins and dynamics of cognitive conflict? A large
body of research studying various conflict tasks has characterized fast
errors as resulting from early response capture of irrelevant information
(Coleman et al., 2017; Dittrich and Stahl, 2017; Duprez et al., 2016;
Ellinghaus and Miller, 2017; Houvenaghel et al., 2016; Hughes and
Yeung, 2011; Salzer et al., 2014; Stins et al., 2007; Wylie et al., 2009).
Using a multivariate analysis techniques capitalizing on trial-to-trial
variability in neural signal, we demonstrate that traces of the conflict
arise in sensory brain areas that code for relevant and irrelevant

Table 1
Anatomical location and MNI coordinates for the whole-brain contrasts.

Left Hemisphere Right Hemisphere

Modality Contrast Anatomical Area MNI coordinates Z max MNI coordinates Z max

Somatosensory Congruent versus Incongruent – –
Incongruent vs. Congruent – –
Left vs. Right. Secondary somatosensory cortex – 41 −21 18 4.52
Right vs. Left Secondary somatosensory cortex −40 −21 14 3.84 –
Continuous vs. Intermittent – –
Intermittent vs. Continuous – –

Visual Congruent vs. Incongruent – –
Incongruent vs. Congruent – –
Left vs. Right. Visual cortex V2 – 14 −88 −10 6.9
Right vs. Left Visual cortex V2 −12 −91 −14 7.37
House vs. Face Temporal occipital fusiform – 25 −47 −14 6.88
Face vs. House – –

Anatomical location and MNI coordinates with z > 3.1 (p < 0.05, cluster-corrected) for the whole-brain contrast incongruent versus (vs.) congruent and left versus
right, and vice versa.
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stimulus features.
Within the framework of the dual-route model, we formulated

concrete predictions in a theoretically principled way (de Hollander
et al., 2016; Forstmann et al., 2016, 2011; Turner et al., 2016). We
framed a qualitative association between the route’s activity and the
clarity of representations for stimulus features in sensory brain areas.
We expected to find traces of the dynamics of the conflict in sensory
brain areas that code for both relevant and irrelevant stimulus features.
We operationalized the clarity of stimulus feature representation on
individual trials as the distance to the hyperplane set up by the SVM
classifier (Kriegeskorte and Kievit, 2013), and related the observed
activity pattern to behavioural responses (Raizada and Kriegeskorte,
2010). We reasoned that to trace the neural correlates of early response
capture in a MVPA fast event-related experimental design fast responses
should be induced by enforcing a response deadline, and the signal-to-
noise ratio should be large enough to amplify the discrepancy of the
neural measures, making it possible for the classifiers to capture the
appropriate data features (Bishop, 2006; Mumford et al., 2012). These
principles were successfully incorporated and our predictions were
corroborated. On trials in which participants made incorrect responses,
the clarity of representation was generally stronger for irrelevant in-
compatible stimulus features, while clarity of irrelevant compatible
feature representation was weaker. At the same time, on trials in which
participants made correct responses, the clarity of the relevant feature
representation was stronger. To summarize, understanding the me-
chanistic role of clarity of feature representation in sensory brain areas
is demonstrated to advance our understanding of the neural origins of
cognitive conflicts, and the dynamics of early response capture.

4.1. Future directions and modelling of conflict tasks

In the present study we demonstrated a qualitative linking, namely,
we used the framework of the dual route model to make predictions
about the differences in feature representation in sensory brain areas.
Tighter links can be made using formal mathematical cognitive models,
which may provide explicit and precise assumptions. A commendable
candidate model is the diffusion model for conflict tasks (DMC; Ulrich
et al., 2015). The DMC is a sequential sampling model whose basic
assumptions derive from the dual-route model. The DMC provides a
mechanistic description of an automatic accumulator of evidence
driven by an irrelevant stimulus dimension on the one hand, and a
deliberate accumulator of evidence for a relevant dimension on the

other. Evidence from both routes is superimposed (combined) onto a
single accumulating process until one of the predetermined thresholds
is reached, after which a response is made. The DMC is a cognitive
model explicitly designed for conflict tasks, which in contrast to other
models can easily explain some benchmark findings in the Simon task,
and thus constitutes a more plausible theoretical framework (Servant
et al., 2016; Ulrich et al., 2015). Within the framework of the present
study, it would have been tempting to correlate the model parameters
with the variability as a proxy of neural feature representations.
However, to the best of our knowledge, the parameters of the DMC have
not been shown to be identifiable (Bamber and van Santen, 2000) and
there are good reasons to think they might not be (Miletić et al., 2017;
White et al., 2018). Model-based cognitive neuroscience approaches
hinge on the possibility of quantifying subject-to-subject or trial-to-trial
variability in cognition, so identifiability of the parameters would be
highly desirable (Forstmann and Wagenmakers, 2015; Palestro et al.,
2018). Other sequential sampling frameworks, as the Linear Ballistic
Accumulator (Brown and Heathcote, 2008) and the Diffusion Decision
Model (Ratcliff et al., 2016) therefore might be more suitable to be used
with the Simon task in a model-based framework (de Hollander et al.,
2016; Turner et al., 2015). However these classical sequential sampling
models cannot easily explain standard findings in the Simon task
(Servant et al., 2015; Ulrich et al., 2015). Clearly, the development of
novel sequential sampling models that are both tractable and can ex-
plain behavioural patterns found in conflict tasks, most pressingly the
Simon task, would be highly advantageous.

Crucially, we believe that all of these models come to the same
prediction as the original qualitative dual-route model. At the same
time, the confirmatory nature of the MVPA predictions put forward in
this paper preclude any strong conclusions about other qualitative
models of the Simon effect. Future work should reveal whether such
models make different or comparable predictions, and whether these
can be used to disambiguate between theoretical accounts of the Simon
effect. Whether the variability in response activations are due to
random bottom-up trial-to-trial noise (Hommel et al., 2004) or are in-
fluenced by feedback processes downstream (Ridderinkhof, 2002b),
remains for now an open question. In future work, brain stimulation
techniques could be used to alter activity in frontal regions (e.g., van
Campen et al., 2018) to see if they influence representations in visual
cortex. Also, dynamic causal modelling or laminar-resolved 7T fMRI
(Stephan et al., 2017; Trampel et al., 2017) could be used to probe how
much the representations in sensory areas are influenced by top-down

Table 2
(Bayesian) ANOVA for hyperplane distance of task-relevant and task-irrelevant features as function of correctness and congruency.

F df MSE p BF10

Somatosensory Irrelevant Congruency 2.46 26 0.016 0.128 0.57
Correctness 0.04 26 0.013 0.841 0.19
Congruency*Correctness 9.99 25 0.017 0.004* 36

Relevant Congruency 0.590 26 0.009 0.449 0.25
Correctness 7.179 26 0.015 0.012* 20
Congruency*Correctness 0.745 25 0.008 0.396 0.35

House/Face trials F df MSE p BF10
Visual Irrelevant Congruency face 0.325 26 0.028 0.574 0.21

house 0.006 26 0.033 0.938 0.19
Correctness face 0.025 26 0.018 0.877 0.2

house 0.924 26 0.012 0.345 0.25
Congruency*Correctness face 1.271 23 0.017 0.271 0.45

house 0.023 22 0.018 0.881 0.28
Relevant Congruency face 1.454 26 0.007 0.239 0.24

house 0.003 26 0.018 0.955 0.2
Correctness face 2.108 26 0.01 0.159 0.48

house 7.6 26 0.018 0.01* 5.48
Congruency*Correctness face 0.33 23 0.013 0.57 0.299

house 0.085 22 0.03 0.774 0.34

It should be noted that errors in the congruent conditions are rare; some of the participants made no errors. This is expressed in the degrees of freedom (df), and in the
relatively large variance for the congruent condition measurements, as visualized in Fig. 5.
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Fig. 5. Mean hyperplane distances of relevant (left) and irrelevant (right) features, in the somatosensory (top) and visual (bottom) Simon tasks, as a function of
congruency and correctness of response. Brain image illustrates a representative slice of the associated region of interest. Error bars denote confidence interval of
95%. Note that a single classifier was trained for the task-relevant visual dimension (house/face), however, for an orderly graphical comparison with the irrelevant
feature display, the visual data-set was split by trial type. Masks’ size, i.e., mean number of voxels, and standard deviation (SD) over subjects, are reported for each
mask.
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signals.
The approach taken in the current study allowed us to derive spe-

cific predictions that are theoretically grounded in the dual-route model
and that can be tested in the data. Using a multivariate analysis tech-
niques we demonstrated that traces of the conflict arise in sensory brain
areas that code stimulus features. Importantly, the main contribution of
this study is showing that it is possible to tap into stimulus re-
presentations during the Simon task and that these representations are
related to behaviour. Additional conceptual replication and im-
plementation with other conflict tasks are necessary in order to further
substantiate the hypotheses brought forth in the present study, and
would advance our understanding how the brain codes and resolves
conflicting information.
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